Renewable Electric Energy: Cost and Integration Issues

Presented by

Jim Dean Weldon-Dean Associates jdean@weldon-dean.com

2009 Environmental Sustainability Symposium August 28, 2009

Typical Renewable Resources

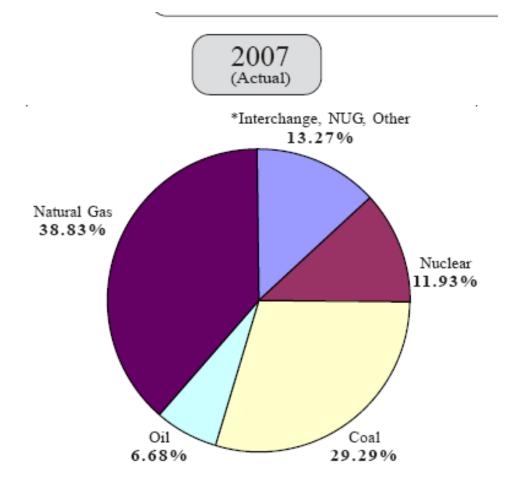
Resource	Potential
Municipal Solid Waste	Available
Biomass	Available
Solar Photovoltaic (PV)	Available
Solar Thermal (non-generating)	Available
Municipal Solid Waste	Available
Wind	Limited Availability
Ocean current	Available but unproven on commercial scale
Hydro generation	Not Available
Geothermal electric generation	Not Available

366.91, Florida Statutes defines renewables as hydrogen from non-fossil sources, biomass (including MSW), solar, geothermal, wind, ocean, hydro generation, and waste heat from sulfuric acid (phosphate production).

Issues with Renewables

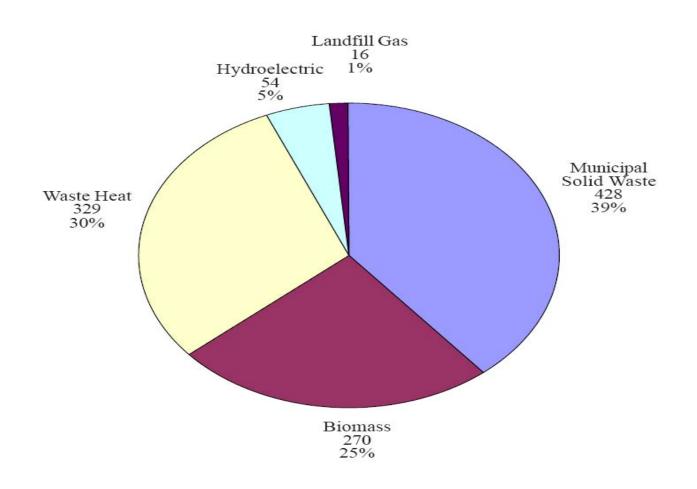
- Florida has limited renewable resources
- Technology is unlikely to fundamentally alter the potential for renewables
- For the most part, renewables do not provide firm capacity resources
- Costs are and will likely remain higher than traditional fossil resources

Important Terms to Understand


- Capacity is the ability to produce energy instantaneously.
- Demand is amount of capacity required at any given moment.
- Generation is the amount of energy produced over time.
- Consumption is amount of energy consumed over time.

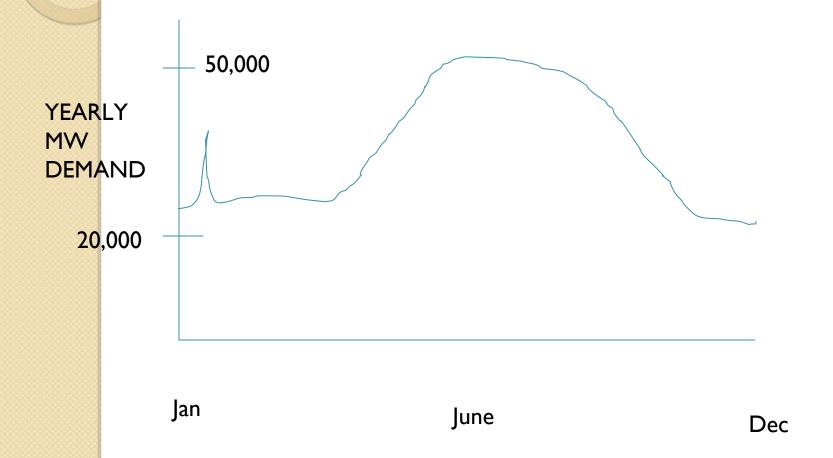
Example: Peak demand on a home may be 10 kilowatts.
 Typically monthly consumption might be 1400 kWhs.

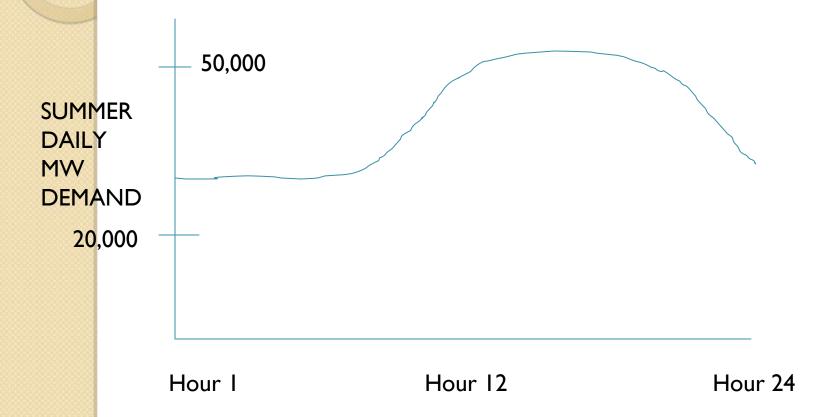
Existing Installed Capacity (2008)


Fuel Type	Amount	Percent of Capacity
Nuclear	3,896	7.0
Coal	11,691	20.9
Natural Gas	22,172	39.6
Oil	10,959	19.6
NUG/IPP	5,202	9.3
Import	1,602	2.9
Firm Renewables	519	0.1
Total	56,041	100%

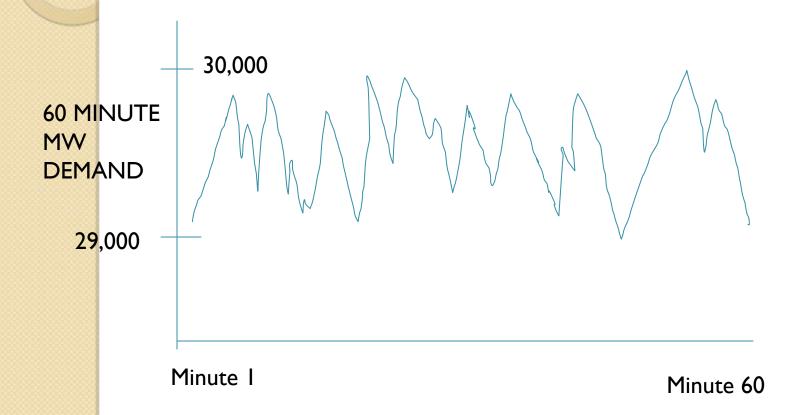
Existing Generation

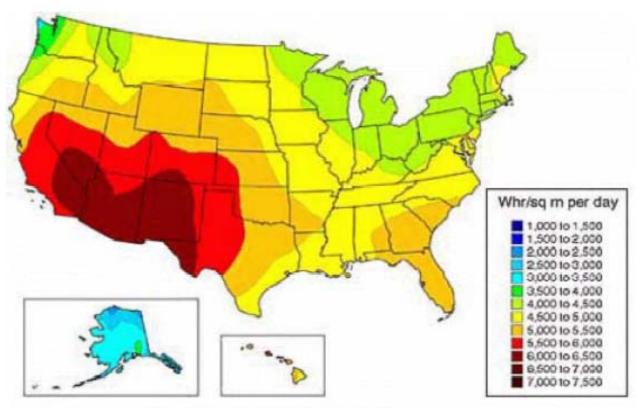
^{*} NUG is Non-Utility Generation; Other includes Petcoke


Existing Renewable Generation Total Installed 1097 MWs


Typical Capacity Factors

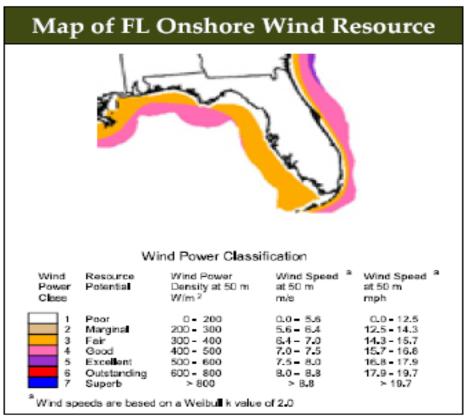
Type of Technology	Capacity Factor
Solar PV	18 – 20 %
Onshore Wind	18%
Offshore Wind	36-40%
Biomass steam	Up to 85% (depends on fuel availability)
Municipal Solid Waste	>85%
Ocean current	>90%
Nuclear	≈92%
Coal	>85%
Combined cycle natural gas	60-85%


365 Day Load Profile


24 Hour Load Profile

One Hour Load Profile

Solar Radiation Map


Solar Photovoltaic Costs

A recent raw material (polysilicon) shortage has caused upward pressure on installed costs, but Navigant Consulting expects costs to fall

Tuii.	Residential PV Economic Assumptions for Given Year of Installation (2008\$)		
	2009	2015	2020
Plant Nameplate Capacity (kW) ¹	4	4	4
Project Life (yrs)	25	25	25
Development Time (yrs) ²	0.3	0.25	.2
Installed Cost (\$/kW)3	8,100	5,900	4,900
Fixed O&M (\$/kW-yr)4	41	24	13
Non-Fuel Variable O&M (\$/kWh)	0	0	0
Fuel/Energy Cost (\$/kWh)	0	0	0

Sources: Stakeholder data submitted to the Florida Public Service Commission, September 2008; Navigant Consulting, October 2008 Notes:

Wind Resources in Florida

Note: The map above is part of a national map produced by NREL. It shows all class one wind onshore.

Source: National Renewable Energy Laboratory (NREL) http://www.windpoweringamerica.gov/pdfs/wind_maps/us_win dmap.pdf, Accessed November 24, 2008.

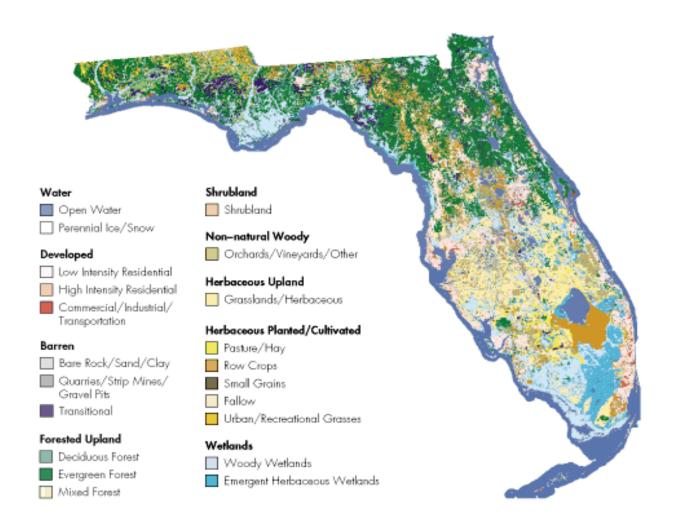

Offshore Wind Resource Costs

-		Offshore Wind Economic Assumptions for Given Year of Installation (2008\$)		
	20091	2015	2020	
Plant Capacity (MW)	NA	300	300	
Project Life (yrs)	NA	25	25	
Development Time (yrs) ²	NA	5	5	
Capital Cost (\$/kW)3	NA	\$4,630	\$4,330	
Fixed O&M (\$/kW-yr)4	NA	\$23	\$23	
Non-Fuel Variable O&M (\$/MWh)4	NA	\$26	\$24	
Fuel/Energy Cost (\$/kWh)	NA	\$0	\$0	

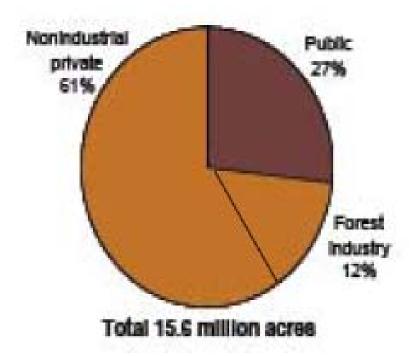
Sources: Navigant Consulting Estimates 2008. Interviews with developers, manufacturers, trade associations, and regulators throughout 2008. 20% Wind Energy by 2030. Increasing Wind Energy's Contribution to U.S. Electricity Supply. U.S. Department of Energy. June 2008. Musial, W and S. Butterfield, Future for Offshore Wind Energy in the United States: Preprint, NREL, June 2004.

Notes:

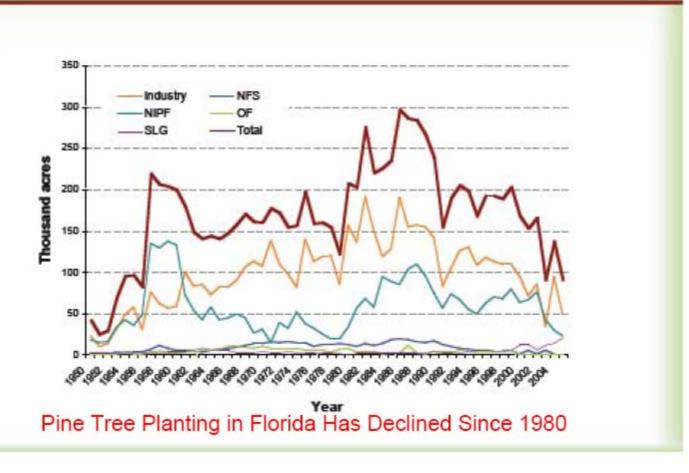
Ocean Current Turbine


An artist's rendition of ocean driven mechanical turbines.

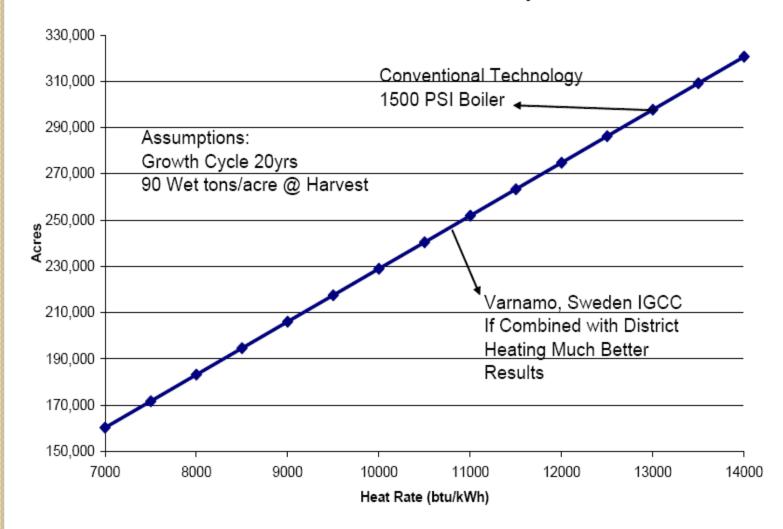
Biomass Power Plant Costs


	Biomass Greenfield Direct Combustion Economic Assumptions for Given Year of Installation (2008\$)		
	2009	2015	2020
Plant Capacity (MW)1	100	100	100
Project Life (yrs)	25+	25+	25+
Development Time (yrs)	3-5	3-5	3-5
Total installed Capital Cost (\$/kW)2	\$4,000	\$4,200	\$4,400
Fixed O&M (\$/kW-yr)3	\$125	\$117	\$111
Non-Fuel Variable O&M (\$/MWh)4	\$2.50	\$2.50	\$2.50
Fuel/Energy Cost (\$/MWh)5	\$31-46	\$30-45	\$29-43

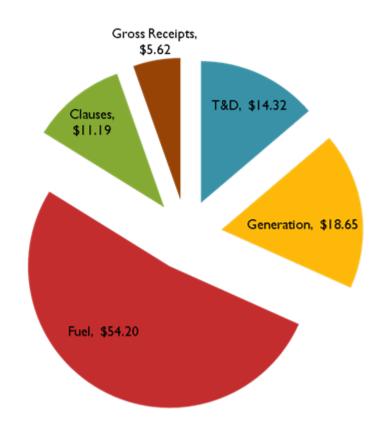
Florida Forest Cover



Forest Ownership


2005

Tree Planting in Florida, 1950-2005


Total Land for 100 MW Facility

Existing Biomass Demands

Retail Rate Components I MWh Total FPL Bill \$103.98

Conclusions p. 1:

- Deployment of renewables will be impacted by carbon taxes or cap & trade allowances cost
- High capacity factor renewables are limited
- Generally entire Southeast US is renewable short
- Despite Pickens Plan transmission will not be built from the plains

Conclusions p. 2

- Natural gas will continue as fuel of choice with or without carbon taxes
- Nuclear is being built (4200 MWs), but initial capital costs and completion risk are high
- Coal not in the future without carbon capture and sequestration