

2013/2014 Annual Monitoring Plan Report 6/1/2013 – 5/31/2014 (Year 3) City of Jacksonville/FDOT NPDES Permit

EXECUTIVE SUMMARY:

Goal I of the monitoring plan is to identify water quality problem areas. This portion of the plan is implemented by the Routine Tributary Program (continuously in effect since the 1970's) and the Tributary BMAP I and II Monitoring Program (Begun in 2010). Before the BMAP monitoring began, the Tributary Intensive program was in effect from 2002 to 2006.

Routine Tributary Monitoring includes sampling 103 sites quarterly for fecal coliform bacteria and field parameters. Having a long-term dataset is necessary in determining long-term trends, particularly for fecal coliform compliance, which has demonstrated the most dramatic changes.

In 2013/2014, the City of Jacksonville continued to play a leadership role in the Lower St. Johns River Tributaries Basin Management Action Plan (BMAP) Working Group. Under the direction of FDEP, this group has developed BMAPs for 25 of the fecal coliform impaired WBIDs in Duval County. The City of Jacksonville is responsible for sampling five fecal coliform impaired WBIDs at 12 stations for the Trib I BMAP; and five fecal coliform impaired WBIDs at 18 sites for the Trib II BMAP. (Sites are periodically added, deleted, and changed based on decisions by the TAT Working Group).

Extra efforts this year included conducting inter-agency Walk-the-WBIDs or "walks" in each of the ten BMAP I waterbodies. The goal of these walks was to intensively search for sources of fecal coliform bacteria pollution, and to specifically identify where urban stormwater is adversely affecting surface water resources. This work was conducted from April through July 2014 (overlapping two annual reporting cycles) and will be summarized in this report and next year's report.

Other Tributary efforts this year included completing the monitoring for the Middle Trout River SSAC and some additional monitoring of the Ribault River for the Bacteria Control Plan.

Goal II of the monitoring plan is to assess effectiveness of storm water BMPs. The City has targeted four project areas. The first project, the Upper Deer Creek Regional Wet Detention Pond effectiveness monitoring, has been completed and previously reported in prior reports. The second project, the Cedar River Outfall Regional Stormwater Facility BMP effectiveness study, was completed last year and was summarized in that report.

The remaining two BMP effectiveness studies will be scheduled in the near future.

Water quality data collected through implementation of this monitoring plan is currently located in City of Jacksonville Access databases. These databases are partially formatted for annual upload to FDEP/STORET databases.

This monitoring plan will be reviewed for changes to improve the plan as required next year, in year four.

2013/2014 Annual Monitoring Plan Report 6/1/2013 – 5/31/2014 (Year 3) City of Jacksonville/FDOT NPDES Permit

INTRODUCTION

The City of Jacksonville, FDOT, City of Atlantic Beach, and City of Neptune Beach submit the following 2013/2014 annual monitoring plan report to fulfill the NPDES Permit monitoring requirement. This monitoring plan report is being submitted as required under Part V.B. of the NPDES MS4 permit. The monitoring plan was approved by the Department on March 5, 2004 with modifications approved on January 17, 2006.

GOALS AND OBJECTIVES OF STORMWATER MONITORING

The goals and objectives of this Monitoring Plan are to assess the effectiveness of the Stormwater Management Program (SWMP) and the associated pollutant reduction from MS4 systems to the waters of the state to the maximum extent practicable (MEP); also, to evaluate load reductions that have occurred and to identify local sources where urban stormwater is adversely affecting surface water resources. The monitoring plan will be revised in Year 4 (next year) to better meet these goals and objectives.

To accomplish the goals and objectives of this monitoring plan the City of Jacksonville is integrating three different water quality efforts. Those programs are:

- 1. The City of Jacksonville's Routine Tributary Monitoring Program.
- 2. The City of Jacksonville's Tributary Fecal Coliform BMAP I, and Tributary Fecal Coliform BMAP II monthly monitoring.
- 3. The City of Jacksonville's studies to document the effectiveness of four different stormwater pollution reduction measures located in four different sub-basins.

SPECIFIC MONITORING GOALS

The focus of our monitoring plan is to address two of the three possible Specific Monitoring Goals discussed in the "General Guidance and Watershed Considerations for Preparing Stormwater Monitoring Plans as Required for Municipal Separate Storm Sewer System (MS4) Permits" document provided by FDEP.

1. Identify potential water quality problem areas related to stormwater runoff that can be targeted for corrective action, retrofits or non-structural BMPs.

This monitoring goal will be achieved through the City of Jacksonville's two ongoing tributary monitoring programs (routine and BMAP) previously mentioned. These programs will be described later in the report.

2. Measure the effectiveness of the stormwater pollution reduction measures (BMPs) that have been or will be implemented.

The City of Jacksonville proposes to document the effectiveness of four different stormwater pollution reduction measures located in four different sub-basins. Those four projects are: Upper Deer Creek, Cedar River Outfall, Pine Forest (New Rose Creek), and Woodland Acres Oakwood Villa (Strawberry Creek).

MONITORING PLAN SPECIFICS

GOAL I:

Identify potential water quality problem areas related to stormwater runoff that can be targeted for corrective action, retrofits or non-structural BMPs.

ROUTINE TRIBUTARY PROGRAM

Objectives

The Routine Tributary Program originated back in the 1970s. The program was initiated to assess the water quality impacts that over 300 small wastewater treatment plants (WWTPS) were having on the tributaries of Duval County. In the beginning, tributary monitoring locations were upstream and downstream of the WWTPs. After the elimination (through connection to sanitary sewer) of most of the county's "package plants" (small WWTPS) water quality monitoring at many of the stations was discontinued. The current Routine Tributary Program has data beginning in 1984 at approximately 105-115 stations scattered throughout Duval County's tributaries. At this time 103 sites are included in the sampling program.

Station locations are often near bridges and roadways to facilitate sampling efforts; sites are both above and within tidal influence from the St. Johns River or

Intracoastal Waterway. The primary objective of this program is collection of long-term dataset that will enable the City to document water quality trends.

TR113A Trout River at Bert Maxwell Boat Ramp

Constituents

The constituents measured in the Routine Tributary Program are limited to field measurements and fecal coliform bacteria.

Field Measurements (multi-parameter water quality instrument):

Dissolved oxygen, percent saturation of dissolved oxygen, pH, temperature, salinity and specific conductance.

Laboratory Analyses:

Both total and fecal coliform bacteria were collected until 1996. For the current program, starting in 1996, laboratory analysis includes only fecal coliform bacteria.

Field Observations:

Stream depth, secchi depth, air temperature, cloud cover, wind velocity and direction, stream appearance, tidal current, visual oil & grease, canopy cover, stream flow stage, current weather, visual turbidity, rain in last 7 days, rain is last 24 hours.

Methodology

Field water quality measurements are collected and logged with a multi-parameter surface water quality meter (MANTA2 multiprobe with optical HDO sensor, Archer hand held display). Fecal coliform samples are collected as surface grab samples.

Frequency

All stations in the Routine Tributary Program are sampled at least quarterly (once every three months).

TR34 Highlands Creek at Broward Rd

Stations

Table 1.

Routine Tributary Stations Sampled (103)

Station ID	Location of Routine Tributary Station	WBID	LAT-Dec	LONG-Dec
ARL11	Jones Creek at Monument Rd.	2246	30.34195	81.53925
ARL15	Ginhouse Creek at Monument Rd.	2248	30.34494	81.53151
ARL18	Cowhead Creek at Ft. Caroline Rd.	2244	30.35489	81.52299
ARL20	Sandalwood Canal at Kernan Rd.	2270	30.30645	81.48918
ARL23	Fairchild Branch at Edenfield Rd.	2213C	30.38079	81.59997
ARL3	Red Bay Branch at Lone Star Rd.	2254	30.33534	81.58028
ARL325	Strawberry Creek at Lone Star Rd.	2239	30.33779	81.55959
ARL453	Strawberry Creek at Arlington Rd.	2239	30.32274	81.58279
ARL6	Newcastle Creek at Ft. Caroline Hills Rd.	2235	30.36564	81.57968
ARL7	Woodmere Stream at Ferber Rd.	2213C	30.3768	81.5908
ARL8	Silversmith Creek at Arlington Rd.	2278	30.3087	81.57865
BB1	Brandy Branch at U.S. 301	2226	30.37783	81.9416
BP64	Big Pottsburg Creek at Belfort Rd. S. End	2265B	30.2576	81.58114
BP65	Bennett Branch at Salisbury Rd.	2319	30.2611	81.5972
BP67	Big Pottsburg Creek at Hogan Rd.	2265B	30.28157	81.57233
BP71	Big Pottsburg Creek Trib. (Leeds Pond) at Parental Home Rd.	2308	30.27362	81.58984
BR146	Broward River at Harts Rd.	2191	30.43859	81.65954
BR7	Cedar Creek at Duval Rd.	2191	30.4582	81.6806
CR139	Big Fishweir Creek at Herschel St.	2280	30.29012	81.71343
CR2	Butcher Pen Creek at Wesconnett Blvd.	2322	30.2599	81.74004
CR21	Wills Branch N. Branch at Old Middleburg Rd.	2282	30.29144	81.76528
CR22	Wills Branch S. Branch at Old Middleburg Rd.	2305	30.28491	81.7679
CR3A	Willow Branch Creek at Azalea St. Footbridge	2213E	30.30418	81.69667
CR427	Cedar River E. Branch at Stuart Ave.	2262	30.31772	81.75033
CR428	Cedar River W. Branch at Stuart Ave.	2262	30.31769	81.75122
CR430	Cedar River at Lenox Ave.	2262	30.29876	81.75525
CR5	Little Fishweir Creek at Park St.	2280	30.29859	81.71296
CR6	Little Fishweir Creek at Greenwood Ave.	2280	30.2914	81.7083
CR84	Williamson Creek at Hyde Park Rd.	2316	30.2737	81.74082
CR85	Cedar River at San Juan Ave.	2213P	30.28183	81.74015
CR95	Wills Branch at Lane Ave. S.	2282	30.28826	81.75541

ARL15 – Ginhouse Creek at Monument Rd

BP67 – Big Pottsburg at Hogan Rd

Station ID	Location of Routine Tributary Station (continued)	WBID	LAT-Dec	LONG-Dec
DC144	Dunn Creek at Faye Rd.	2181	30.43764	81.58212
DC5	Terrapin Creek at Alta Rd.	2204	30.42898	81.5803
DC6	Dunn Creek at Dunn Creek Rd.	2181	30.45497	81.59685
DC7	Terrapin Creek at Faye Rd.	2204	30.4344	81.5655
DC8	Rushing Branch at Alta Rd.	2189	30.45273	81.57899
DEC1	Deep Creek at U.S. 90	2245	30.30033	82.03082
DR1	Deer Creek at Talleyrand Ave.	2256	30.34173	81.62808
DR2	Deer Creek E. of Haines St. D/S of S. Branch	2256	30.34361	81.6364
DUC2	Sampson Creek at State Road 210	2419	30.06476	81.50143
DUC3	Durbin Creek at Racetrack Rd.	2365	30.09921	81.5253
DUC4	Durbin Creek at U.S. 1	2365	30.09813	81.47266
GC1	Greenfield Creek at Atlantic Blvd.	2240	30.32071	81.45522
GC4	Mt. Pleasant Creek at Mt. Pleasant Rd.	2234	30.35857	81.46651
HC3	Hogan Creek at First St. W. of Laura St.	2252	30.3366	81.65727
IWW2	Sherman Creek at A1A Bridge	2227	30.37115	81.43194
IWWD	Hogpen Creek at San Pablo Rd.	2270	30.30706	81.44531
IWWF	Open Creek at San Pablo Rd.	2299	30.27024	81.44069
IWWG	Cradle Creek Branch at Fairway Ln.	2205C	30.27481	81.40322
IWWH	Hopkins Creek at Kings Rd.	2266	30.30924	81.41693
JC15	Cormorant Branch at Julington Creek Rd.	2381	30.14045	81.62177
JC3	Julington Creek at Greenland Rd.	2351	30.1618	81.5594
JC339	Julington Creek at U.S. 1	2351	30.1885	81.5622
JC440	Julington Creek at Old St. Augustine Rd.	2351	30.14367	81.55546
JC441	Big Davis Creek at U.S. 1	2356	30.15187	81.52608
JC5	Oldfield Creek at Julington Creek Rd.	2370	30.13857	81.60643
LB1	Long Branch at Wigmore St.	2233	30.37185	81.63967
LB2	Long Branch at Evergreen Ave.	2233	30.36434	81.64354
LP3	Little Pottsburg Creek at Art Museum Dr.	2284	30.30038	81.61341
LP4	Little Pottsburg Creek at Bedford Rd.	2284	30.28619	81.61452
MC1	McCoy Creek at Myrtle Ave.	2257	30.32588	81.67771
МС3	McCoy Creek at Leland St.	2257	30.32656	81.69858
JC15	Cormorant Branch at Julington Creek Rd.	2381	30.14045	81.62177
JC3	Julington Creek at Greenland Rd.	2351	30.1618	81.5594
JC339	Julington Creek at U.S. 1	2351	30.1885	81.5622
OR110	Fishing Creek at 110th St.	2324	30.241	81.73251
OR13	McGirts Creek at Shindler Dr.	2338	30.22575	81.79806
OR344	McGirts Creek at Normandy Blvd.	2249A	30.27436	81.83403
OR346	McGirts Creek at Old Plank Rd.	2249B	30.33035	81.86166
OR110	Fishing Creek at 110th St.	2324	30.241	81.73251

IWWH Hopkins Creek at Kings Rd

Station ID	Location of Routine Tributary Station (continued)	WBID	LAT-Dec	LONG-Dec
OR348	Ortega River at Argyle Forest Blvd.	2249A	30.19654	81.76864
OR4	Fishing Creek at Timuquana Rd.	2324	30.24732	81.73386
OR434	Ortega River at Collins Rd.	2249A	30.20131	81.73053
OR8	Fishing Creek N. Branch at Wesconnett Blvd.	2324	30.24361	81.73806
OR9	Fishing Creek at Wesconnett Blvd.	2324	30.23621	81.73926
PC2	Third Puncheon Branch at JTB Blvd.	2273	30.25104	81.5278
PC8	Cedar Swamp Creek at Glen Kernan Pkwy.	2290	30.25592	81.47622
SC1	Puckett Creek at Wonderwood Dr.	2227	30.3665	81.42319
SC3	Sherman Creek at Wonderwood Dr.	2227	30.37017	81.41165
SS1	Miller Creek at Atlantic Blvd.	2287	30.30614	81.62877
SS10	New Rose Creek at San Jose Blvd.	2306	30.26156	81.64608
SS11	Christopher Creek at San Jose Blvd.	2321	30.25292	81.63958
SS17	South Creek off Plummers Cove at Scott Mill Rd.	2213F	30.18928	81.63136
SS18	Deep Bottom Creek at Scott Mill Rd.	2361	30.17881	81.63803
SS19	Tacito Creek at Scott Mill Rd.	2382	30.17019	81.64067
SS20	Mandarin Drain at Mandarin Rd. and Loretto Rd.	2385	30.1635	81.64815
SS26	San Jose Creek at San Jose Blvd.	2213E	30.24642	81.63167
SS319	Goodbys Creek at Sanchez Rd.	2326	30.22158	81.60908
SS63	Craig Creek in Park at Hendricks Ave.	2297	30.29513	81.64886
SS4	Miramar Creek at San Jose Blvd.	2304	30.28477	81.65615
TC1	Thomas Creek at U.S. 1	2161	30.50528	81.79167
TR10	Ninemile Creek at Trout River Blvd.	2220	30.41585	81.73427
TR113A	Trout River at Bert Maxwell Boat Ramp	2203A	30.40273	81.66393
TR114	Moncrief Creek at Lem Turner Rd.	2228	30.38132	81.67134
TR123	Trout River at U.S. 1 at Boat Ramp Pier	2203	30.43686	81.76144
TR128	Ribault River at Harbor View Boat Ramp	2224	30.3964	81.71086
TR23	Sixmile Creek N. Branch at Imeson Rd.	2231	30.36328	81.77297
TR3	Creek at Palmdale St. at Lake Palmdale Overflow	2224	30.38872	81.69814
TR314	Little Sixmile Creek at Pickettville Rd.	2238	30.37091	81.73453
TR316	Moncrief Creek at 33rd St.	2228	30.36482	81.69014
TR34	Highlands Creek at Broward Rd.	2203A	30.42356	81.67968
TR37	Blockhouse Creek at Leonid Rd.	2207	30.42977	81.68919
TR40	West Branch at Capper Rd.	2210	30.42753	81.7099
TR422	Sixmile Creek S. Branch at Imeson Rd.	2232	30.36139	81.77308
TREE10	Trout River at Old Kings Rd.	2203	30.43108	81.76855
YWC1	Yellow Water Creek at Normandy Blvd.	2323	30.22936	81.92097
YWC2	Yellow Water Creek D/S of Sal Taylor Creek	2323	30.19539	81.91806

SS1 Puckett Creek at Wonderwood Dr

SS19 Tacito Creek at Scott Mill Rd

2013/2014 ROUTINE TRIBUTARY PROGRAM DATA:

The raw surface water quality data collected for this report can be found in Table 12 as Attachment A at the end of this report.

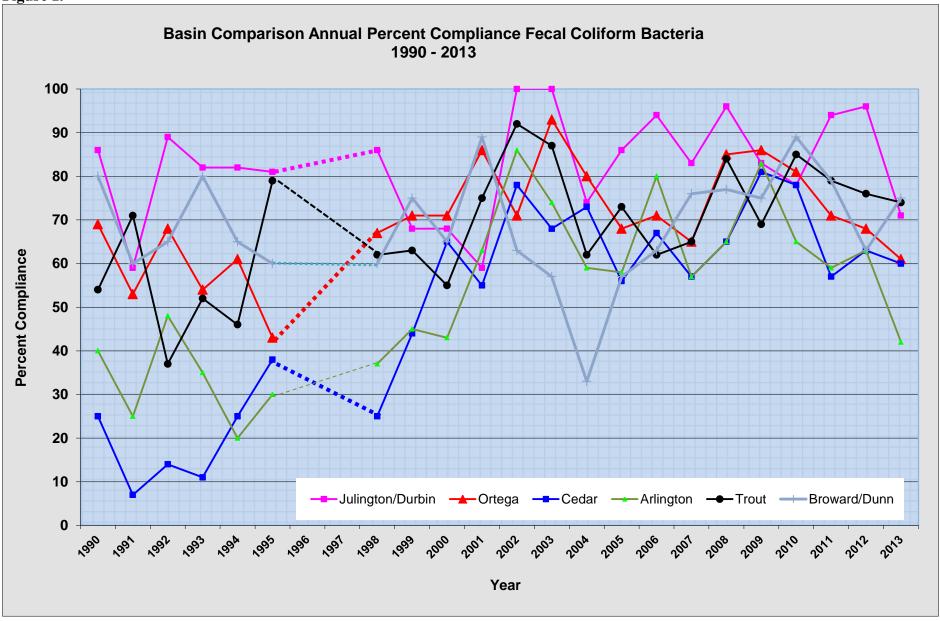
DISCUSSION OF ROUTINE TRIBUTARY PROGRAM RESULTS

Water Quality Trends

Routine Tributary water quality trends for calendar years 1990 through 2013 are plotted in Figures 1 through 7. Each data point is for a **full calendar year**; therefore no 2014 data is used.

Figure 1 charts the percent compliance of six major drainage basins with the State standard for fecal coliform bacteria over the past 24 years. <u>Important Note</u>: The standard used in the Figure 1 chart is for the one day **maximum of 800 colony forming units/100ml** (cfu/100ml), rather than the standard of "not to exceed 400 in 10% of samples" which is used in the Tributary BMAP documents.

The six basins represented in the figures are Arlington River (11 sites), Cedar River (8 sites), Julington/Durbin Creek (9 sites), Ortega River (7 sites), Trout River (13 sites) and Broward River/Dunn Creek (7 sites).


BP64 Arlington River Basin

Most basins show a long-term improvement in compliance with the fecal coliform standard. Four basins show very significant improvement between 1998 and 2002. These four basins are Arlington, Ortega, Trout, and Cedar. These significant improvements in bacteria compliance may be due to a combination of factors. One of the most likely causes is the regionalization of the many hundreds of small poorly-maintained wastewater treatment plants that formerly discharged partially treated wastewater into the tributaries. The City Of Jacksonville's Regionalization Rule required phase-out of these small treatment facilities into fewer, larger, well-operated facilities with better treatment. Another factor contributing to significant improvement in bacteria levels may be the State-wide requirements for stormwater treatment.

For the last 11 years, improvements in bacteria compliance are not as significant. Julington / Durbin Basin shows fluctuations up and down during this period, with a decline in 2013. Arlington River basin likewise shows fluctuations for the past 11 years, but an unexplained decline to 2000 levels in 2013. Ortega River basin shows a gradual decline since 2009. The Trout River basin has remained close to 75-80% compliance for the last three years. The Cedar River basin is very close to 2012 data. And the Broward / Dunn basins, after a dramatic and unexplained low compliance rate in 2004, shows an overall improvement except in 2012.

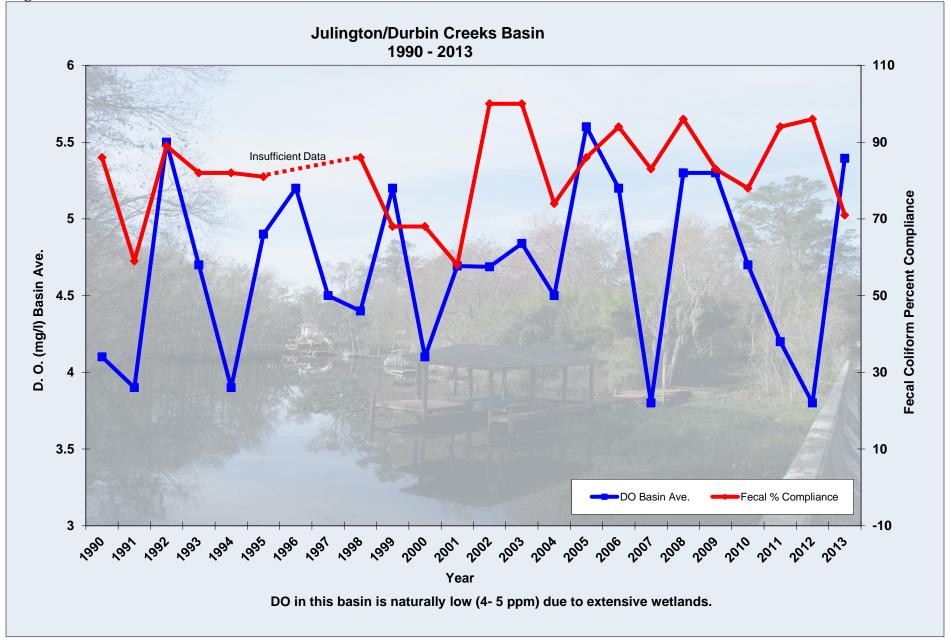
Figure 1.

Figures 2 - 7 present fecal coliform and dissolved oxygen (D.O.) compliance with State criteria for each of the same six basins. (The Julington/Durbin Creek system, due to the extensive wetlands in the basin and very dark water has poor compliance with the 5.0 mg/L freshwater D.O. standard; and for this creek system the WQB has graphed actual dissolved oxygen values rather that percent compliance.) Looking at D.O. and bacteria compliance together for each basin, the following can be observed. During the 1990's, dissolved oxygen compliance was generally better than fecal coliform compliance for the basins evaluated. However, since around 2000, that trend has changed dramatically in the Arlington River basin

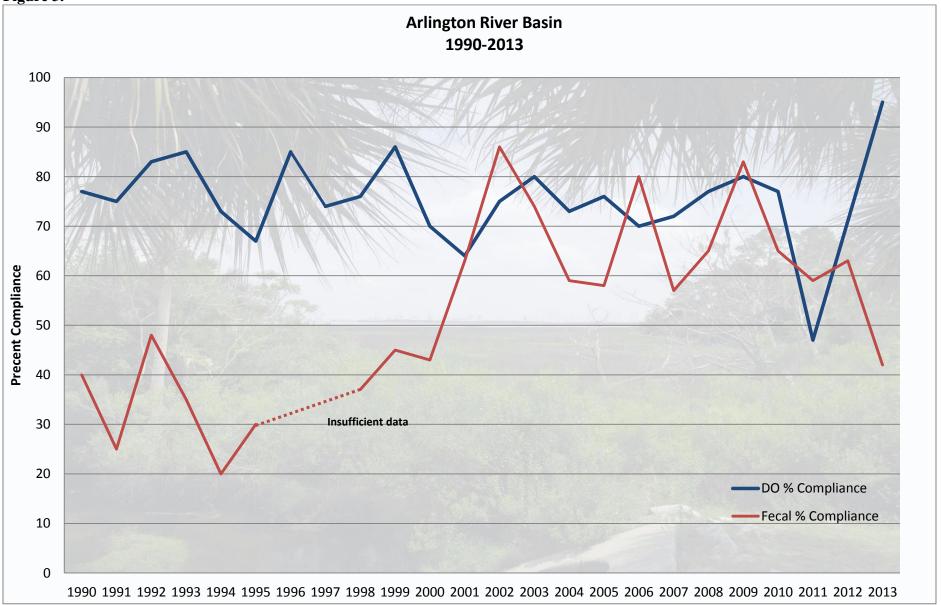
and Cedar River basin, and somewhat in the Ortega River basin, as bacteria levels have significantly improved. Comparing D.O. and bacteria compliance together for each basin, there appears little correlation in the year-to-year variation of the two parameters, with a few exceptions.

Looking at long-term dissolved oxygen trends, most basins show no clear trends, either improving or declining. The exception may be a slight long-term decline in D.O. compliance for the Ortega River basin. For the short term, after a decline in DO compliance last year for most basins (likely due to drought conditions in Northeast Florida which reduced flows, water depths, and dissolved oxygen levels) all basins show a significant improvement in dissolved oxygen compliance in 2013.

Looking at Figures 2-7 for fecal coliform bacteria trends, considering the entire 24 year record, the data indicate a gradual long-term improvement with compliance with the fecal coliform standard with the record



compliance with the fecal coliform standard, with the possible exception of Broward/Dunn Basin. For the last year, one basin improved slightly and five basins declined slightly.


Looking at Fecal Coliform compliance data for the last 11 years from 2002 to 2013:

- 1. Julington Creek/Durbin Creek Basin: from a high of 100% compliance in 2002 and 2003, compliance has ranged from 70% to 97%.
- 2. Arlington River Basin: levels have fluctuated up and down between 55% and 85% compliance, with last year (2013) dropping down to 42%, the lowest compliance rate since 2000.
- 3. Ortega River Basin: compliance has varied from between 60% to 95%. The last four years have shown slight declines in fecal coliform compliance.
- 4. Trout River Basin shows a slow improvement since 2004, with current compliance levels at 74%.
- 5. Cedar River Basin: levels of compliance varied from 55% to 80%, with no strong pattern of improvement or decline.
- 6. Broward River/Dunn Creek Basin had a steep decline in compliance in 2004. Then this basin has displayed a steady improvement, from a low of 35% compliance in 2004 to 90% compliance in 2010. It then declined slightly for two years and improved last year.

Figure 2.

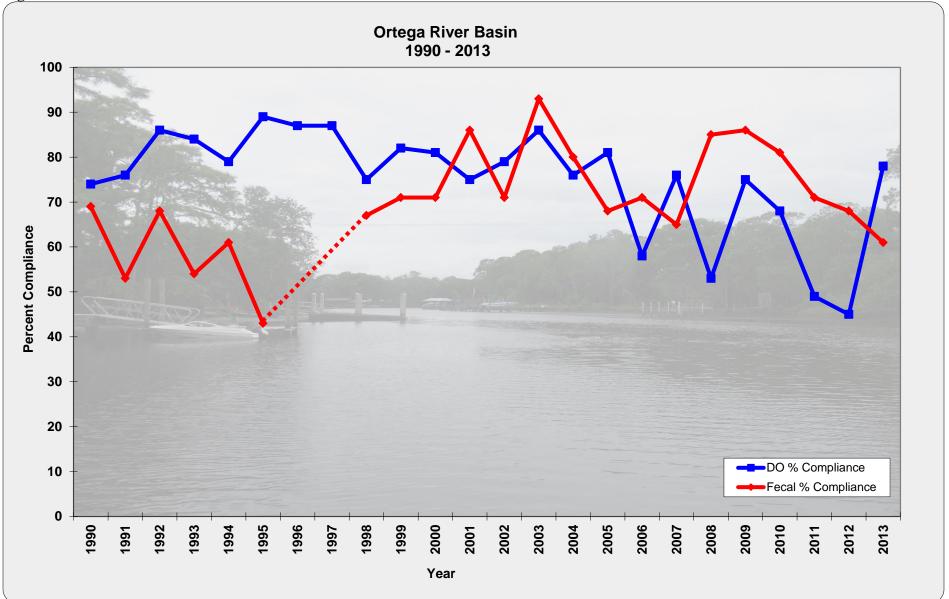
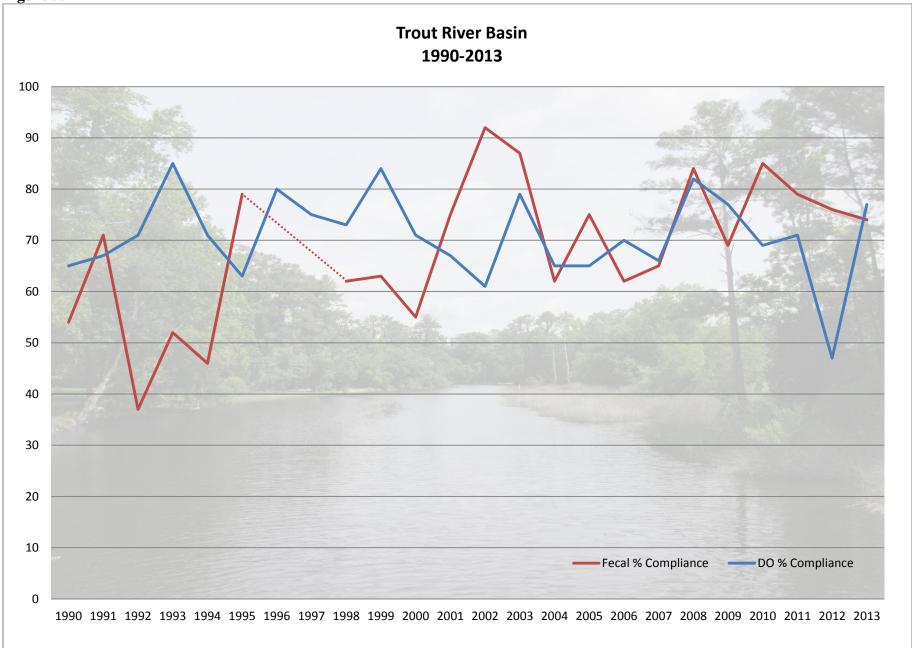



Figure 5.

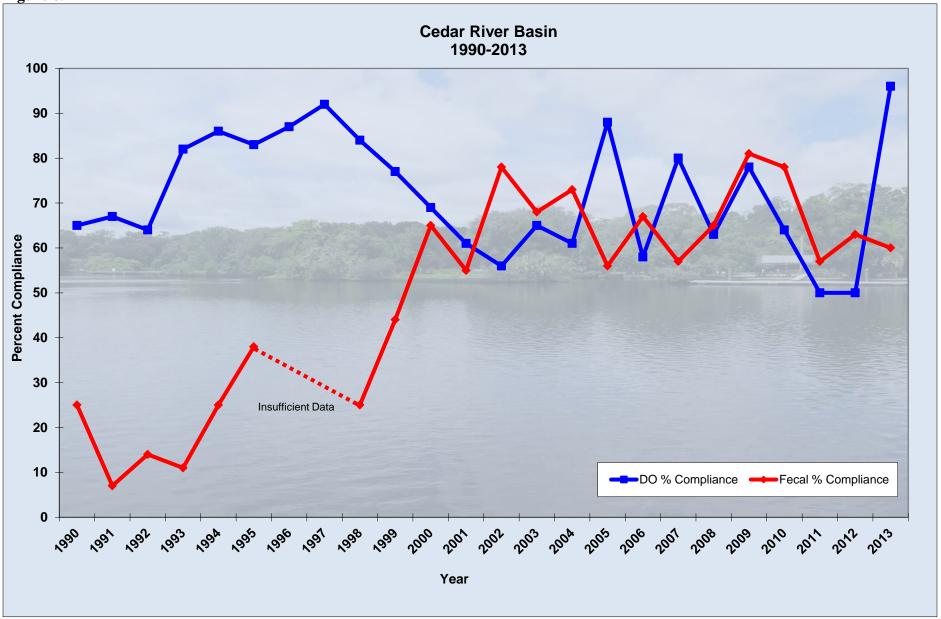
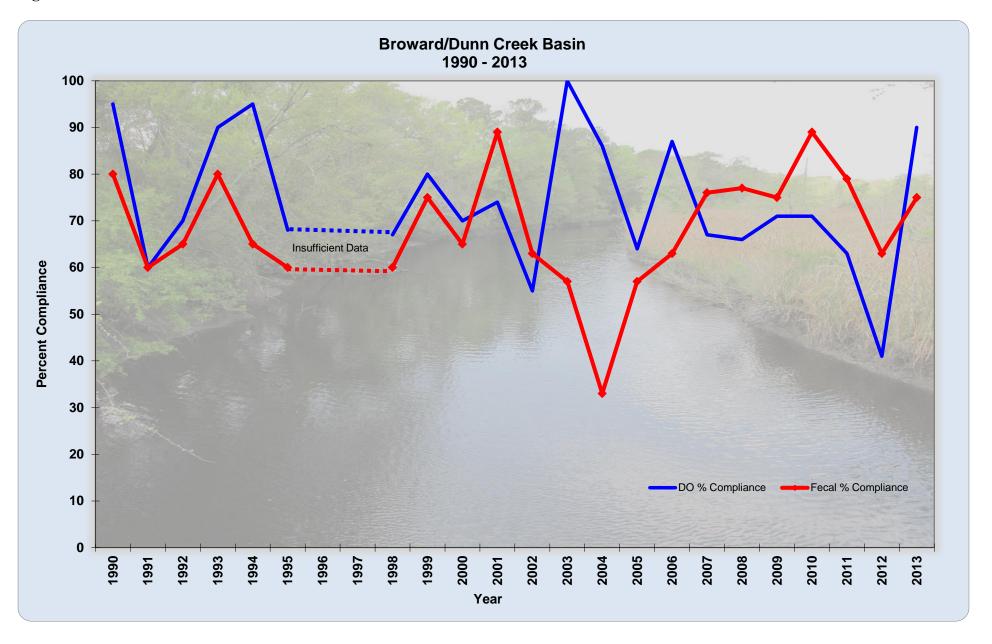
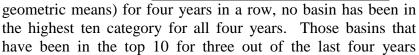



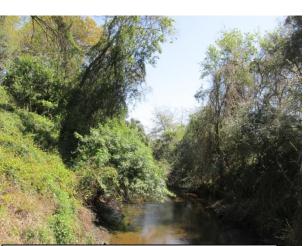
Figure 7.

2013/2014 Water Quality Data for Jacksonville WBIDs



In Table 2 all Water Body ID's (WBID's) monitored by the Routine and BMAP Tributary Programs are ranked by fecal coliform bacteria geometric mean for the June 1, 2013 to May 31, 2014, Cycle 3 Year 3 sample period. For emphasis, only City of Jacksonville, EQD monitoring data is used in these rankings, not all data in STORET. The number of data points for each WBID is in parentheses following the waterbody name. The number 1 rank is the worst WBID based on fecal coliform bacteria geometric mean.

For this year's reporting cycle, 14 out of 70 WBIDs (20 percent) have geometric means that exceed the 800 cfu/100ml one time maximum criteria. This exceedance rate is significantly lower than last year's 39 percent, and is similar to the previous year's 17 per cent. Table 2 also shows a comparison of the rankings of all tributaries monitored for this year and the three prior years. There is quite a bit of variation and moving about among the rankings from year to year.



Looking at the 10 worst-ranking WBIDs highest fecal

include Miller Creek. Butcher Pen Creek, Hogan Creek, Craig Creek, Cradle Creek Branch, and Fairchild Those basins Branch. that have entered the worst top ten ranking

for the first time this year include Normandy Village Run, North & South Creeks, New Rose Creek, Deep Bottom Creek, and Middle Trout

IWWG - WBID 2205C Cradle Creek Branch

River. Those basins showing great improvement from last year include Strawberry Creek, Rushing Branch (only two data points) Long Branch, Bay Branch Red (with only one data point), and Mill Dam Branch.

CR22 - WBID 2305 Normandy Village Run

Routine and BMAP Tributary Program June 1, 2013 – May 31, 2014 WBIDs Ranked by Fecal Coliform Bacteria Geometric Means

Table 2

Current Rank	Waterbody	WBID	Fecal Coliform Bacteria Geometric Mean (Colonies/100 mL)	Rank 2010- 2011	Rank 2011- 2012	Rank 2012- 2013
1	Miller Creek (33)	2287	3289	2	19	5
2	Butcher Pen Creek (2)	2322	2206	1	1	14
3	Hogan Creek (36)	2252	1794	10	14	3
4	Craig Creek (4)	2297	1729	3	11	38
5	Cradle Creek Branch (4)	2205C	1515	26	2	9
6	Normandy Village Run (3)	2305	1407	57	12	13
7	North & South Creeks (4)	2213F	1265	22	24	67
8	New Rose Creek (4)	2306	1249	59	25	69
9	Deep Bottom Creek (27)	2361	1202	32	17	23
10	Trout River (8)	2203	1031	55	58	61
11	Six Mile Creek N Branch (6)	2231	1027	66	32	53
12	Little & Big Fishweir Creeks (8)	2280	1025	11	30	11
13	Cedar River (5)	2262	875	61	22	18
14	Fairchild Branch & minor trib. (10)	2213C	825	6	6	2
15	Six Mile Creek S Branch (5)	2232	795	56	23	50
16	Williamson Creek (3)	2316	668	34	10	19
17	Willow Branch & minor trib. (6)	2213E	662	21	38	35
18	McCoys Creek (6)	2257	643	31	45	57
19	Blockhouse Creek (2)	2207	625	28	20	16
20	Hopkins Creek (35)	2266	621	67	64	43
21	Oldfield Creek (4)	2370	511	8	63	46
22	Cowhead Creek (2)	2244	493	9	13	31
23	Little Pottsburg Creek (6)	2284	486	29	35	36
24	Newcastle Creek (22)	2235	477	30	8	32
25	Strawberry Creek (3)	2239	468	19	37	8
26	Tacito Creek (4)	2382	446	12	48	12
27	Rushing Branch (2)	2189	442	18	29	6
28	West Branch (4)	2210	429	16	9	17
29	Cormorant Branch (34)	2381	406	7	43	55
30	Ribault River & Palmdale Creek (9)	2224	395	52	51	60
31	Wills Branch (5)	2282	391	44	33	33
32	Little Six Mile Creek (4)	2238	375	27	31	62
33	Long Branch (8)	2233	366	38	44	1
34	Ginhouse Creek (2)	2248	360	35	40	25
35	Miramar Creek (23)	2304	358	40	7	29
36	Fishing Creek (60)	2324	355	14	27	42
37	Open Creek (3)	2299	354	43	46	22
38	Jones Creek (2)	2246	349	25	18	28
39	Julington Creek (7)	2351	322	45	53	51
40	Unnamed Creek Mandarin (4)	2385	296	4	21	59

Routine and BMAP Tributary Program June 1, 2013 – May 31, 2014 WBIDs Ranked by Fecal Coliform Bacteria Geometric Means

Table 2.

	able 2.		Faral C III	D- '	D- 1	D- 1
			Fecal Coliform Bacteria	Rank 2010-	Rank 2011-	Rank 2012-
Current			Geometric Mean	2010-	2011-	2012-
Rank	Waterbody	WBID	(Colonies/100 mL)	2011	2012	2010
41	McGirts Creek (3)	2338	265	39	55	64
42	Silversmith Creek (2)	2278	238	37	15	15
43	Nine Mile Creek (4)	2220	201	24	68	49
44	Deep Creek (2)	2245	201	51	70	66
45	Hogpen Creek (7)	2270	199	50	42	54
46	Christopher Creek (4)	2321	176	5	4	26
47	Deer Creek (16)	2256	157	48	57	24
48	Bennett Branch (2)	2319	155	15	39	10
49	Terrapin Creek (4)	2204	144	41	34	34
50	Sherman & Puckett Creeks (58)	2227	143	63	61	48
51	Goodby's Creek (4)	2326	141	17	28	41
52	Ortega River (8)	2249A	121	62	65	68
53	Red Bay Branch (1)	2254	90	13	5	4
54	Sampson Creek (4)	2419	89	20	50	56
55	Moncrief Creek (7)	2228	86	36	16	37
56	Big Davis Creek (3)	2356	79	53	62	40
57	Cedar & Ortaga River (3)	2213P	73	71	54	58
58	Thomas Creek (4)	2161	68	58	60	70
59	Yellow Water Creek (6)	2323	64	64	69	47
60	Big Pottsburg Creek (4)	2265B	64	33	56	39
61	Highlands Creek & Trout River (8)	2203A	61	60	66	52
62	Greenfield Creek (4)	2240	58	46	26	20
63	Durbin Creek (8)	2365	50	49	67	63
64	McGirts Creek (6)	2249B	38	42	41	21
65	Dunn Creek (4)	2181	35	54	52	45
66	Broward River (6)	2191	32	65	36	30
67	Cedar Swamp Creek (3)	2290	32	47	49	44
68	Big Pottsburg Creek (3)	2308	27	23	3	65
69	Mill Dam Branch (4)	2273	18	70	47	7
70	Mt. Pleasant Creek (3)	2234	6	69	59	27
71	Brandy Branch (0)	2225	0	68	71	

On the following page, Table 3 lists all WBID's monitored by the Routine and BMAP Tributary Programs listed in order alphabetically by waterbody name, as an easier way to find information on a particular stream. The number of samples collected during this reporting period is

in parentheses following the waterbody name.

For each WBID, this table presents three sets of data:

- 1. Fecal coliform geometric mean,
- 2. Percent <u>compliance</u> for dissolved oxygen measurements and
- 3. Percent <u>compliance</u> for the fecal coliform bacteria Class III water quality standard of less than or equal to 800 colony forming units (cfu)/100ml (not the 400 cfu used in the BMAP evaluations). This table compares data for the last three years.

Routine and BMAP Tributary Program Current and Previous Reporting Periods

Table 3.

Waterbody⁺	WBID		Geom			cent D. mpliand		Percent Fecal Compliance**		
		2013-	2012-	2011-	2013-	2012-	2011-	2013-	2012-	2011-
		2014	2013	2012	2014	2013	2012	2014	2013	2012
Bennett Branch (2)	2319	155	1448	259	50%	67%	33%	100%	0%	100%
Big Davis Creek (3)	2356	79	446	51	67%	60%	67%	100%	80%	67%
Big Pottsburg Creek (3)	2308	27	73	3397	100%	100%	33%	100%	50%	0%
Big Pottsburg Creek (4)	2265B	64	480	160	75%	100%	25%	100%	67%	100%
Blockhouse Creek (2)	2207	625	1358	596	100%	50%	33%	100%	50%	67%
Brandy Branch (0)	2225			1			0%			100%
Broward River (6)	2191	32	620	318	33%	38%	13%	100%	63%	88%
Butcher Pen Creek (2)	2322	2206	1386	8343	100%	75%	25%	0%	25%	25%
Cedar & Ortaga River (3)	2213P	73	197	192	100%	75%	50%	67%	75%	75%
Cedar River (5)	2262	875	1289	506	50%	80%	27%	20%	50%	67%
Cedar Swamp Creek (3)	2290	32	411	219	100%	100%	100%	100%	75%	67%
Christopher Creek (4)	2321	176	849	3079	75%	50%	67%	50%	50%	33%
Cormorant Branch (34)	2381	406	254	235	42%	36%	33%	68%	73%	100%
Cowhead Creek (2)	2244	493	607	762	50%	80%	100%	50%	40%	33%
Cradle Creek Branch (4)	2205C	1515	1789	3703	100%	100%	67%	25%	25%	33%
Craig Creek (4)	2297	1729	519	1019	50%	0%	33%	25%	50%	33%
Deep Bottom Creek (27)	2361	1202	887	649	38%	38%	33%	33%	38%	73%
Deep Creek (2)	2245	201	61	3	100%	0%	0%	100%	67%	100%
Deer Creek (16)	2256	157	859	158	50%	23%	43%	81%	36%	74%
Dunn Creek (4)	2181	35	387	199	75%	67%	50%	100%	78%	100%
Durbin Creek (8)	2365	50	122	22	25%	33%	10%	100%	83%	100%
Fairchild Branch & minor trib. (10)	2213C	825	3067	2467	89%	75%	80%	40%	25%	20%
Fishing Creek (60)	2324	355	416	474	71%	78%	40%	65%	56%	63%
Ginhouse Creek (2)	2248	360	849	257	50%	60%	25%	100%	40%	100%
Goodby's Creek (4)	2326	141	419	474	75%	33%	33%	75%	60%	67%
Greenfield Creek (4)	2240	58	1083	487	50%	50%	67%	100%	25%	67%
Highlands Creek & Trout River (8)	2203A	61	258	25	86%	75%	50%	100%	75%	100%
Hogan Creek (36)	2252	1794	2518	758	50%	68%	75%	17%	25%	67%
Hogpen Creek (7)	2270	199	256	239	86%	63%	33%	86%	88%	83%
Hopkins Creek (35)	2266	621	415	37	59%	70%	73%	37%	51%	87%
Jones Creek (2)	2246	349	795	628	100%	100%	67%	100%	60%	67%
Julington Creek (7)	2351	322	273	194	71%	60%	33%	71%	80%	100%
Little & Big Fishweir Creeks (8)	2280	1025	1426	428	60%	100%	0%	38%	11%	64%
Little Pottsburg Creek (6)	2284	486	530	320	83%	100%	63%	67%	83%	88%
Little Six Mile Creek (4)	2238	375	154	425	75%	75%	25%	75%	50%	75%

^{*}Dissolved Oxygen (D.O.) compliance for this table is set at greater than or equal to 4.0 mg/L for saltwater; greater than or equal to 5.0 mg/L for freshwater.

^{**}Fecal coliform compliance is less than or equal to 800 colony forming units/100ml.

^{*}Parentheses denotes the number of samples taken during the period of between June 1, 2013 and May 31, 2014

Routine and BMAP Tributary Program Current and Last Reporting Period

Table 3.

Waterbody	WBID		Geor			cent D		Percent Fecal Compliance**		
Waterbody	WBID	`		00mL)		npliand			-	
		2013- 2014	2012- 2013	2011- 2012	2013- 2014	2012- 2013	2011- 2012	2013- 2014	2012- 2013	2011- 2012
Long Branch (8)	2233	366	3199	231	67%	40%	63%	50%	0%	75%
McCoys Creek (6)	2257	643	212	225	50%	75%	25%	67%	75%	63%
McGirts Creek (3)	2338	265	89	166	100%	100%	100%	67%	100%	100%
McGirts Creek (6)	2249B	38	1072	243	83%	100%	33%	100%	33%	100%
Mill Dam Branch (4)	2273	18	1800	222	100%	100%	0%	100%	0%	100%
Miller Creek (33)	2287	3289	1859	615	60%	88%	75%	24%	29%	50%
Miramar Creek (23)	2304	358	675	2352	86%	100%	42%	52%	50%	25%
Moncrief Creek (7)	2228	86	523	684	57%	50%	50%	86%	50%	83%
Mt. Pleasant Creek (3)	2234	6	818	96	67%	67%	67 %	100%	33%	100%
New Rose Creek (4)	2306	1249	37	489	100%	50%	33%	50%	50%	67%
Newcastle Creek (22)	2235	477	604	1734	68%	54%	100%	41%	54%	50%
Nine Mile Creek (4)	2220	201	352	22	75%	67%	75%	100%	100%	100%
Normandy Village Run (3)	2305	1407	1387	1008	100%	100%	100%	33%	33%	50%
North & South Creeks (4)	2213F	1265	56	501	100%	100%	33%	50%	100%	67%
Oldfield Creek (4)	2370	511	372	43	33%	0%	0%	50%	100%	100%
Open Creek (3)	2299	354	919	223	100%	67%	67%	67%	43%	100%
Ortega River (8)	2249A	121	45	29	75%	71%	18%	100%	100%	100%
Red Bay Branch (1)	2254	90	1896	2795	100%	75%	60%	100%	0%	0%
Ribault River & Palmdale Creek (9)	2224	395	174	209	78%	71%	50%	89%	71%	83%
Rushing Branch (2)	2189	442	1856	446	100%	75%	50%	100%	0%	50%
Sampson Creek (4)	2419	89	244	211	75%	67%	20%	100%	67%	80%
Sherman & Puckett Creeks (58)	2227	143	353	60	52%	65%	76%	66%	49%	88%
Silversmith Creek (2)	2278	238	1379	688	100%	75%	40%	100%	50%	60%
Six Mile Creek N Branch (6)	2231	1027	258	413	60%	100%	33%	17%	100%	100%
Six Mile Creek S Branch (5)	2232	795	324	504	100%	75%	67%	40%	100%	33%
Strawberry Creek (3)	2239	468	1800	316	67%	88%	50%	67%	38%	60%
Tacito Creek (4)	2382	446	1410	221	33%	25%	0%	75%	25%	100%
Terrapin Creek (4)	2204	144	546	322	100%	83%	57%	100%	33%	71%
Thomas Creek (4)	2161	68	34	61	25%		0%	100%	100%	100%
Trout River (8)	2203	1031	156	137	75%	50%	13%	25%	83%	88%
Unnamed Creek Mandarin (4)	2385	296	193	592	33%	25%	0%	75%	100%	33%
West Branch (4)	2210	429	1353	1293	33%	67%	33%	75%	25%	33%
Williamson Creek (3)	2316	668	1260	1116	100%	100%	25%	67%	100%	50%
Willow Branch & minor trib. (6)	2213E	662	537	313	60%	60%	14%	67%	60%	57%
Wills Branch (5)	2282	391	570	405	100%	100%	50%	80%	57%	75%
Yellow Water Creek (6)	2323	64	365	9	100%	80%	67%	100%	67%	100%

Notes:
*Dissolved Oxygen (D.O.) compliance for this table is set at greater than or equal to 4.0 mg/L for saltwater; greater than or equal to 5.0 mg/L for

^{**}Fecal coliform compliance is less than or equal to 800 colony forming units/100ml.

^{*}Parentheses denotes the number of samples taken during the period of between June 1, 2013 and May 31, 2014

TRIBUTARY INTENSIVE PROGRAM

In the 2013/2014 reporting cycle the "Tributary Intensive" work was comprised of the City of Jacksonville responsibilities for scheduled monitoring for two different Basin Management Action Plans (BMAPS) and several special studies.

The first BMAP for which the City of Jacksonville has responsibilities for monitoring, is the BMAP adopted for the Fecal Coliform TMDL for the first group of Lower St. Johns River Tributaries. (Trib BMAP I). This BMAP, adopted December 2009 is for ten tributaries all within Duval County. The tributaries or WBIDs covered in this BMAP are: Newcastle Creek (2235), Hogan Creek (2252), Butcher Pen Creek (2322), Miller Creek (2287), Miramar Creek (2304), Big Fishweir Creek (2280), Deer Creek (2256), Terrapin Creek (2204), Goodby's Creek (2326) and Open Creek (2299). The City of Jacksonville has committed to perform the required fecal coliform BMAP monitoring for five of these WBIDS: Newcastle, Hogan, Miller, Miramar and Deer Creeks.

The second BMAP in which the City of Jacksonville has responsibility to monitor is for the second group of Lower St. Johns River tributaries (Trib BMAP II). This BMAP, adopted August 2010, covers 15 tributaries in Jacksonville: Blockhouse Creek (2207), Cormorant Branch (2381), Craig Creek (2297), Deep Bottom Creek (2361), Fishing Creek (2324), Greenfield Creek (2240), Hopkins Creek (2266), McCoy Creek (2257), Moncrief Creek (2228), Pottsburg Creek (2265B), Sherman Creek (2227), Trout River downstream (2203A), Middle Trout River (2203), Williamson Creek (2316), Wills Branch (2282). The City of Jacksonville has agreed to monitor in five of these tributaries: Fishing Creek, Deep Bottom Creek, Hopkins Creek, Sherman Creek, and Cormorant Branch.

Miller Creek Surface Film on Water near Headwaters

Lower St. Johns River Tributary I Fecal Coliform BMAP Monitoring (Trib BMAP I)

Objectives

This BMAP, adopted December 2009 is for ten tributaries all within Duval County. The Tributaries (WBIDs) covered in this BMAP are: Newcastle Creek (2235), Hogan Creek (2252), Butcher Pen Creek (2322), Miller Creek (2287), Miramar Creek (2304), Big Fishweir Creek (2280), Deer Creek (2256), Terrapin Creek (2204), Goodby's Creek (2326) and Open Creek (2299). The City of Jacksonville has committed to perform the required fecal coliform BMAP monitoring for five of these WBIDS: Newcastle, Hogan, Miller, Miramar and Deer Creeks. The purpose of the monitoring program is to search for and eliminate sources of bacterial contamination and to measure improvements in fecal coliform levels that may be attributed the various BMAP projects implemented by stakeholders.

Constituents

As described in the monitoring plan for this BMAP the constituents include:

Field Measurements:

Water Temperature
pH
Specific Conductance
Dissolved Oxygen (D.O.)
Secchi Depth
Total Stream Depth
Sample Depth
Meteorological Data

Laboratory Analyses:

Fecal Coliform Bacteria

Additional field observations include stream appearance, tidal condition, visual oil & grease, and canopy cover.

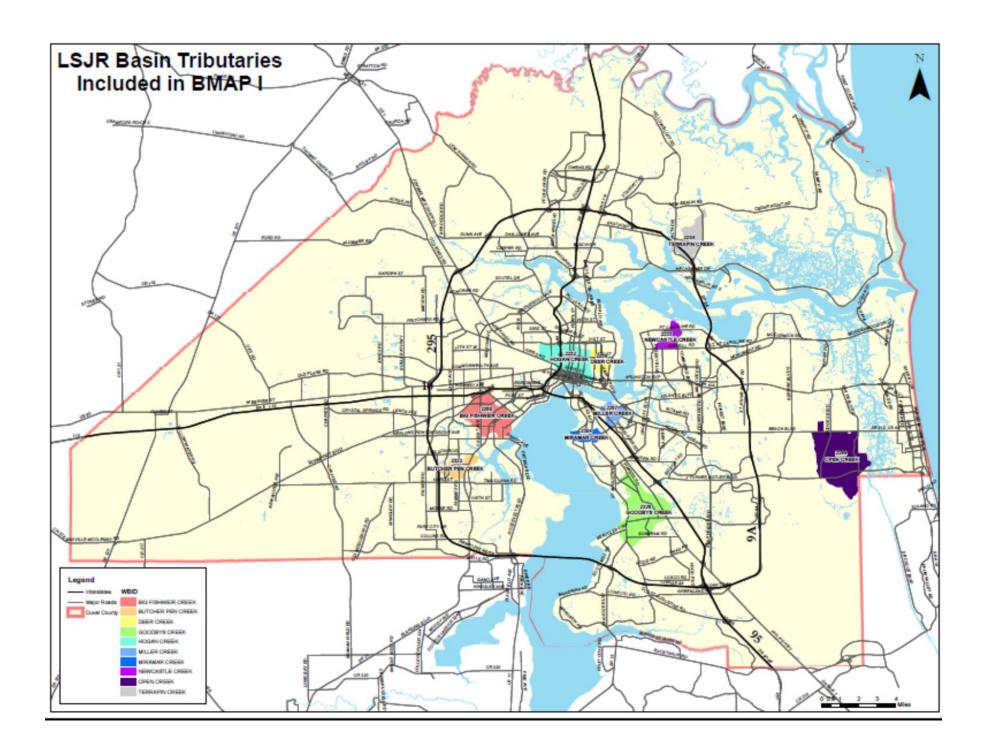
Methodology

Field water quality measurements are collected and logged with a multi-parameter surface water quality meter (MANTA2 multiprobe with optical HDO sensor and Archer hand held display) or comparable multi-parameter instrument. Water samples are collected as surface water grab samples.

Frequency

All City of Jacksonville fecal coliform BMAP sampling is being conducted on a monthly frequency (even though the BMAP document allows some sites to sampled quarterly). When fecal coliform results exceed 5000 cfu/100 ml, follow-up sampling is implemented in an effort to identify a source for the elevated results. All follow-up results are tracked independently and are not entered into STORET.

Stations


Table 6. City of Jacksonville Tributary Group I BMAP Monitoring Stations (18)

Site	WBID	LOCATION	LAT-Dec	LONG-Dec	Stream Name
ARL5A	2235	Newcastle Creek at Berrywood Ln.	30.35455	81.5787	Newcastle Creek
ARL5B ⁺	2235	Newcastle Creek Upstream of Berrywood Ln.	30.354044	81.578652	Newcastle Creek
ARL6 *	2235	Newcastle Creek at Fort Caroline Hills Dr.	30.36567	81.57977	Newcastle Creek
HC1A	2252	Hogan Creek at Broad St.	30.34089	81.66146	Hogan Creek
HC2A	2252	Hogan Creek at Hubbard St.	30.33336	81.65327	Hogan Creek
HC3 *	2252	Hogan Creek at First Street	30.33652	81.65738	Hogan Creek
HC4+	2252	Hogan Creek at 10th St.	30.34904	81.66214	Hogan Creek
DR1 *	2256	Deer Creek east of Talleyrand Ave.	30.34171	81.62814	Deer Creek
DR2 *	2256	Deer Creek at ML King Jr. Parkway	30.34365	81.63621	Deer Creek
DR2S⁺	2256	Deer Creek Southern Junction Box, just upstream from DR2	30.34368	81.63644	Deer Creek
DR3 ⁺	2256	Deer Creek at Talleyrand Ave.	30.34141	81.6292	Deer Creek
SS1 *	2287	Miller Creek at Atlantic Blvd.	30.30612	81.62888	Miller Creek
SS21 ⁺	2287	Miller Creek West Branch at Camden Ave.	30.30056	81.63118	Miller Creek
SS23	2287	Miller Creek East Branch at Mayfair Rd.	30.29837	81.63055	Miller Creek
SS2A ⁺	2287	Miller Creek South Branch at Stillman St.	30.3047	81.62655	Miller Creek
SSBSC	2287	Miller Creek at Atherton Rd.			
SS4 *	2304	Miramar Creek at San Jose Blvd.	30.2825	81.65134	Miramar Creek
SS505	2304	Miramar Creek at Emerson St. west of St. Augustine Rd.	30.28483	81.64497	Miramar Creek
SS5A ⁺	2304	Miramar Creek at Orlando Circle W.	30.282018	81.649557	Miramar Creek
SSGAD	2304	Miramar Creek at Gadston Rd			

Denotes new site

^{*} Denotes Routine Tributary Site and BMAP site.

+ Denotes deleted site.

2013/2014 TRIBUTARY GROUP I FECAL COLIFORM BMAP COJ DATA (Trib BMAP I):

The surface water quality data (temperature, pH, specific conductance, dissolved oxygen, percent saturation of dissolved oxygen and fecal coliform bacteria) are located in Table 7. The percent compliance for fecal coliform noted at the bottom of each table uses the 800 cfu standard.

Table 7. BMAP I Program. June 1, 2013 – May 31, 2014

Red denotes violation of Class III Surface Water Quality Standards Green Specific Conductance denotes Marine Water

Water Body ID	Waterbody			Wat	er Quality D	ata	
2235	Newcastle	Creek					
Station	DATE	Temp ©	рН	Specific Cond.	D.O. (mg/L)	D.O. % Sat.	Fecal Coliform (CFU/100mL)
ARL6	6/28/2013	24.27	6.31	279.2	6.03	72.6	950
ARL5A	6/28/2013	25.96	6.4	376.8	3.63	45	1
ARL6	7/17/2013	25.18	7.36	281.1	7.7	94.2	3700
ARL5A	7/17/2013	26.13	6.69	420.9	4.2	52.3	1712
ARL6	8/15/2013	25.13	6.97	222.8	5.7	70.6	8182
ARL5A	9/3/2013	26.67	6.13	305.8	4.62	58.1	9720
ARL6	9/3/2013	24.92	6.59	244.1	6.8	82.8	6750
ARL5A	11/19/2013	21.62	6.9	411	7.61	85.3	5800
ARL6	11/19/2013	20	7.25	281	5.45	60	1351
ARL6	12/2/2013	18.2	7.19	649	4.29	45.6	1171
ARL5A	12/2/2013						721
ARL6	1/17/2014	13.89	7.41	491			190
ARL5A	1/17/2014	13.71		397			38
ARL6	2/13/2014	14.56	7.74	252.9	6.99	69.1	360
ARL5A	2/13/2014	16.24	7.51	329.6	6.12	62.8	90
ARL6	3/19/2014	17.48	7.81	272	8.23	86.1	631
ARL5A	3/19/2014	20.48	7.66	641	8.49	94.1	1
ARL6	4/10/2014	19.65	7.21	292.6	6.66	72.6	811
ARL5A	4/10/2014	22.71	6.95	643.3	7.05	82.9	1
ARL5A	5/27/2014	23.96	7.41	341.6	3.79	45.1	2600
ARL6	5/27/2014	22.41	7.64	245.6	5.29	61.2	1171
			Percent Compliance		68%		41%

Notes:

^{*}Dissolved Oxygen (D.O.) compliance for this table is set at greater than or equal to 4.0 mg/L for saltwater; greater than or equal to 5.0 mg/L for freshwater.

^{**}Fecal coliform compliance is less than or equal to 800 colony forming units/100ml.

Table 7. BMAP I Program. June 1, 2013 - May 31, 2014

Vater Body ID	Waterbody			Water	Quality Dat	a	
2252	Hogan Creek						Fecal Colifor
Station	DATE	Temp ©	рН	Specific Cond.	D.O. (mg/L)	D.O. % Sat.	
HC2A	6/4/2013	27.6		524.3			2800
HC3	6/4/2013	27.39		523.7			2300
HC1A	6/4/2013	27.77		8			721
HC1A	7/8/2013	26.48	6.82	487.1	3.35	42	5900
HC3	7/8/2013	28.34	7.18	613.2	4.8	62.2	2300
HC2A	7/8/2013	28.73	7.04	979.6	3.1	40.5	1351
HC1A	8/21/2013	28.23	6.79	441.9	3.23	41.8	8559
HC2A	8/21/2013	28.83	6.9	1614	3.01	39.4	3600
HC3	8/21/2013	29.09	6.83	1281	3.3	43.5	3400
HC1A	9/10/2013	27.69	7.21	509.5	5.49	70.3	4400
HC2A	9/10/2013	27.68	6.95	1307	3.36	43.2	1712
HC3	9/10/2013	28.18	7.3	1380	5.37	69.6	1532
HC3	10/7/2013	26.74	7.2	943	2.8	35.3	44000
HC1A	10/7/2013	26.05	6.96	382.4	2.5	31.1	31000
HC2A	10/7/2013	26.81	7.11	2964	2.98	37.9	19550
HC2A	11/13/2013	18.93	7.52	4279	5.13	66.9	2500
HC3	11/13/2013	18.28	7.51	1789	4.99	52.7	901
HC1A	11/13/2013	16.42	7.62	545	4.24	43.4	811
HC2A	12/4/2013	19.17	6.11	6361	6.7	74	811
HC3	12/4/2013	19.28	6.01	4744	8.51	94.7	811
HC1A	12/4/2013	19.81	7.64	1690	8.81	97	811
HC1A	1/13/2014	16.22	7.3	1030	7.54	77.3	4300
HC3	1/13/2014	16.51	7.25	1144	6.27	64.6	1441
HC2A	1/13/2014	16.35	7.38	1310	6.95	72.3	1351
HC2A	2/3/2014	17.89	7.54	1059			991
HC3	2/3/2014	18.48	7.54	3301			631
HC1A	2/3/2014	18.43	7.69	4452			90
HC1A	3/4/2014	17.55	7.28	498.9	5.45	57.6	991
HC2A	3/4/2014	18.16	6.94	6394	5.71	62.2	811
HC3	3/4/2014	18.27	7.16	1557	4.51	48.5	631
HC3	4/3/2014	20.01	7.24	453.2	5.84	64.8	901
HC1A	4/3/2014	19.97	7.23	462.5	5.77	64	541
HC2A	4/3/2014	20.89	7.22	505.3	6.36	71.8	541
HC1A	5/14/2014	25.02	7.26	431.5	4.52	55.2	2900
HC2A	5/14/2014	26	7.01	2817	3.25	41.8	2100
HC3	5/14/2014	26.33	7.22	1122	5.52	69.2	1351
			Perc	ent Compliance	50%		17%

Notes:
*Dissolved Oxygen (D.O.) compliance for this table is set at greater than or equal to 4.0 mg/L for saltwater; greater than or equal to 5.0 mg/L for freshwater.

^{**}Fecal coliform compliance is less than or equal to 800 colony forming units/100ml.

Table 7. BMAP I Program. June 1, 2013 - May 31, 2014

Water Body ID	Waterbody			Wate	r Quality Da	ıta	
2256	Deer Creek						Fecal Coliform
Station	DATE	Temp ©	рН	Specific Cond.	D.O. (mg/L)	D.O. % Sat.	(CFU/100mL)
DR1	6/4/2013	27.46		9046			1351
DR2	7/8/2013	26.19	6.96	339.8	1.59	19.9	631
DR1	7/8/2013	28.16	6.77	8570	3.29	43.6	360
DR1	8/21/2013	29.39	6.78	12585	4.58	62.9	1171
DR1	9/10/2013	27.52	6.74	10689	1.28	16.9	541
DR1	10/3/2013	25.79	7.16	8000	4.35	55.1	721
DR1	11/13/2013	18.07	7.36	13760	2.1	23.3	180
DR2	12/4/2013	21.57	7.22	1079	3.46	39.2	1
DR2	1/6/2014						2000
DR1	1/6/2014						360
DR1	2/3/2014	14.01	7.23	15439			450
DR1	4/3/2014	19.37	7.11	1374	3.13	34.4	270
DR2	4/3/2014	21.04	7.34	372.1	5.55	62.8	90
DR1	5/5/2014	24.49	6.47	14905	5.73	72.7	721
			Perc	ent Compliance	50%		81%

Notes:
*Dissolved Oxygen (D.O.) compliance for this table is set at greater than or equal to 4.0 mg/L for saltwater; greater than or equal to 5.0 mg/L for freshwater.

^{**}Fecal coliform compliance is less than or equal to 800 colony forming units/100ml.

Table 7. BMAP I Program June 1, 2012 – May 31, 2013

Water Body ID	Waterbody			Wate	r Quality Da	ıta	
2287	Miller Creek						Fecal Coliform
Station	DATE	Temp ©	рН	Specific Cond.	D.O. (mg/L)	D.O. % Sat.	(CFU/100mL)
SS1	6/17/2013	28.13	7.63	7116	7.9	110	4300
SS21D	6/17/2013	23.83	6.21	369.3	3.27	39	10450
SS23	6/17/2013	25.78	6.88	738.2	4.62	57.2	2400
SS1	7/18/2013	27.15	6.82	3905	3.39	43.5	8018
SS21D	7/18/2013	24.84	6.42	253	2.53	30.4	11892
SS23	7/18/2013	25.41	6.86	638.7	2.77	34.1	6000
SS1	8/20/2013	29.5	7.22	8815	5.47	74.3	721
SS21D	8/20/2013	25.14	6.44	367.2	5.42	66.3	29000
SS23	8/20/2013	26.14	6.87	938.5	3.45	43.1	630
SS1	9/3/2013	28.04	6.72	616.3	3.95	50.9	34000
SS21D	9/3/2013	25.58	6.9	354.8	5.1	62.9	40000
SS23	9/3/2013	25.99	6.85	557.1	4.16	51.7	4800
SS1	11/19/2013	17.48	7.88	5763	8.81	93.8	270
SS21D	11/19/2013	19.72	7.27	245	8.29	90.7	15856
SS23	11/19/2013	18.99	7.28	524	4.7	50.8	5900
SS1	12/18/2013	13.61	7.72	3878	8.68	85.1	450
SS21D	12/18/2013	16.39	6.77	355.6	5.28	54.5	10270
SS23	12/18/2013	13.66	7.11	640.9	4.68	45.4	1532
SS1	1/17/2014	12.15	7.69	4891			180
SS21D	1/17/2014	11.15	7.43	485			1200
SS23	1/17/2014	10.11	7.84	1345			380
SS1	2/10/2014	13.81	6.68	13169	6.41	65.4	2900
SS21D	2/10/2014	16.45	8.05	338	6.48	66.8	13784
SS23	2/10/2014	13.48	7.18	919.9	5.49	53.2	450
SS1	3/13/2014	12.61	7.11	3141	7.59	72.7	991
SS21D	3/13/2014	11.13	7.08	200	10.85	99.4	5000
SS23	3/13/2014	14.16	7.22	581.9	5.66	55.6	721
SS1	4/10/2014	18.29	7.04	2059	5.01	54	3100
SS21D	4/10/2014	18.74	7.53	338.8	5.67	61.3	9009
SS2A	4/10/2014	17.29	7.28	584.3	5.69	59.8	1261
SS1	5/29/2014	27.35	6.22	14450	5.6	73.4	2400
SS21D	5/29/2014	22.87	7.79	351.8	3.91	45.6	8300
SS23	5/29/2014	24.08	7.07	603	2.3	27.5	33000
			Perc	ent Compliance	60%		24%

Notes:
*Dissolved Oxygen (D.O.) compliance for this table is set at greater than or equal to 4.0 mg/L for saltwater; greater than or equal to 5.0 mg/L for freshwater.

^{**}Fecal coliform compliance is less than or equal to 800 colony forming units/100ml.

Table 7. BMAP I Program. June 1, 2012 – May 31, 2013

Water Body ID	Waterbody	Water Quality Data					
2304	Miramar Creek						Fecal Coliform (CFU/100mL)
Station	DATE	Temp ©	рН	Specific Cond.	D.O. (mg/L)	D.O. % Sat.	
SS4	6/12/2013	25.26	6.41	472.7	4.46	54.7	1622
SSGAD	6/12/2013	27.22	6.6	428.7	5.1	64.8	2000
SS4	7/15/2013	24.98	7.01	441.7	5.7	69.6	3000
SSGAD	7/15/2013	26.49	6.71	404.1	5.59	70.1	3300
SS4	8/15/2013	28.05	6.55	327.1	5.43	69.9	1
SSGAD	8/15/2013	29.07	6.79	305	5.97	78.3	1
SS4	9/3/2013	27.04	6.84	423.5	5.07	64.2	2800
SSGAD	9/3/2013	28.59	6.77	386.9	6.05	79.6	2500
SS4	10/17/2013	23.22	6.57	2150	6.5	77.2	1802
SS4	11/14/2013	19.07	6.92	10570	8.64	74.7	1171
SSGAD	11/14/2013	18.87	7.3	478	4.9	52.8	631
SS4	12/11/2013	18.71	6.83	436.5	5.12	55.3	920
SSGAD	12/11/2013	19.14	6.92	415.3	6.83	74.4	100
SS4	1/16/2014	14.4	7.73	918			660
SSGAD	1/16/2014	14.56	7.51	815			310
SS4	2/10/2014	16.52	7.54	7622	3.86	40.8	270
SSGAD	2/10/2014	15.98	7.87	398.9	7.89	80.5	541
SS4	3/31/2014	17.23	7.12	434.2	6.53	68.5	631
SSGAD	3/31/2014	17.07	7.12	395.4	8.25	86.2	1
SS4	4/1/2014	18.61	7.94	453	9.58	102	811
SSGAD	4/1/2014	18.99	7.92	417	8.91	96.1	180
SS4	5/21/2014	21.86	6.99	831.4	5	57.3	721
SSGAD	5/21/2014	23.05	7.11	416.4	5.01	58.7	991
			Perc	ent Compliance	86%		52%

Notes:
*Dissolved Oxygen (D.O.) compliance for this table is set at greater than or equal to 4.0 mg/L for saltwater; greater than or equal to 5.0 mg/L for freshwater.

^{**}Fecal coliform compliance is less than or equal to 800 colony forming units/100ml.

<u>DISCUSSION OF FECAL COLIFORM MONITORING TRIBUTARY I BMAP</u> (Trib BMAP I):

The objective of the BMAP monitoring effort is twofold: 1. To track fecal coliform water quality improvements resulting from implementation of a variety of projects within each BMAP WBID, and 2. To identify hotspots and then follow-up with additional sampling and investigations so that new or problematic sources will be identified and corrective measures taken by appropriate stakeholders. Stakeholders including the City of Jacksonville provide FDEP with annual updates on the water quality monitoring, project implementation status, and any corrective actions on a WBID basis. It is beyond the scope of this monitoring report to include those project lists and discussion.

The City of Jacksonville's fecal coliform BMAP I monitoring results are summarized in Table 8. In order for a WBID to be considered in compliance by the impaired water rule, no more than 10 percent of the samples may exceed 400 cfu/100 ml. Compliance with the 400 cfu/100 ml standard (not the 800 cfu standard as in Table 7) is displayed in Table 8 which includes the last four years of data separated by year.

The ten BMAP I tributaries are some of the worst fecal coliform bacteria impaired WBIDs in the Lower St. Johns River Basin. They were intentionally selected for this reason. All of the five BMAP I WBIDs being monitored by the City of Jacksonville had exceedances much greater than 10 percent. This year, like last year, the two creeks with the highest percentage of fecal coliform violations were Hogan Creek and Miller Creek (97% both years for Hogan, 91% and 89% for Miller, of samples above 400 cfu/100ml.) This year the highest geometric mean was for Miller Creek at 3289. The lowest geometric mean was for Deer Creek at 157. Deer Creek exceeded the 400 cfu/100 ml in 50% of the samples.

Looking at data for four years, there are no real improving trends for any of the five BMAP I waterbodies in the short term. This is different than the longer-term comparisons with the TMDL figures which do show a significant improvement in fecal coliform levels in BMAP I WBIDs. For the last four years, the worst water quality (highest geometric mean) has been in Miller Creek for three of the years and Hogan Creek in one year. The best water quality (lowest geometric mean) has been in Deer Creek for three years and Miramar Creek in one year. Much effort has again been spent in studying and investigating the creeks with the most elevated bacteria levels. Hogan Creek and Miller Creek in particular have had successes in discovering and removing sources, as reported in the Tributary BMAP Annual Progress Reports. Additional work has been initiated recently by DEP Tallahassee staff in collecting samples to identify where human sources are originating from in these creeks. It may take more time, but it is anticipated that all this effort will eventually result in lower fecal coliform bacteria levels.

Miramar Creek

Table 8. Tributary Group I Fecal Coliform BMAP COJ Data Summary. Sampling effort, number of samples exceeding the 400 cfu/100 mL state standard for impairment designation, and geometric means.

2013-2014

WBID	Waterbody	Number of samples	Number > 400 cfu/100ml	Percent of samples> 400 cfu/100 ml	BMAP Geometric Mean cfu/100 ml
2235	New Castle Creek	22	15	68%	477
2252	Hogan Creek	36	35	97%	1794
2256	Deer Creek	16	8	50%	157
2287	Miller Creek	33	30	91%	3289
2304	Miramar Creek	23	16	70%	358

2012-2013

WBID	Waterbody	Number of samples	Number > 400 cfu/100ml	Percent of samples> 400 cfu/100 ml	BMAP Geometric Mean cfu/100 ml
2235	New Castle Creek	24	16	67%	1540
2252	Hogan Creek	36	35	97%	2518
2256	Deer Creek	14	9	64%	859
2287	Miller Creek	35	31	89%	1859
2304	Miramar Creek	18	12	67%	675

2011 -2012

WBID	Waterbody	Number of samples	Number > 400 cfu/100ml	Percent of samples> 400 cfu/100 ml	BMAP Geometric Mean cfu/100 ml
2235	New Castle Creek	35	30	86%	1416
2252	Hogan Creek	47	31	66%	550
2256	Deer Creek	37	22	59%	334
2287	Miller Creek	48	38	79%	1878
2304	Miramar Creek	17	16	94%	1629

2010 -2011

WBID	Waterbody	Number of samples	Number > 400 cfu/100ml	Percent of samples> 400 cfu/100 ml	BMAP Geometric Mean cfu/100 ml
2235	New Castle Creek	25	13	52%	373
2252	Hogan Creek	34	32	94%	1178
2256	Deer Creek	32	13	41%	197
2287	Miller Creek	34	30	88%	4446
2304	Miramar Creek	25	11	44%	252

Lower St. Johns River Tributary II Fecal Coliform BMAP Monitoring (Trib BMAP II)

Objectives

This BMAP, adopted in August 2010, is for 15 tributaries in Duval County. These 15 WBIDs include: Blockhouse Creek (2207), Cormorant Branch (2381), Craig Creek (2297), Deep Bottom Creek (2361), Fishing Creek (2324), Greenfield Creek (2240), Hopkins Creek (2266), McCoy Creek (2257), Moncrief Creek (2228), Pottsburg Creek (2265B), Sherman Creek (2227), Trout River downstream (2203A), Middle Trout River (2203), Williamson Creek (2316), and Wills Branch (2282). The City of Jacksonville has agreed to monitor in five of these tributaries: Fishing Creek, Deep Bottom Creek, Hopkins Creek, Sherman Creek, and Cormorant Branch. The purpose of the monitoring program is to search for and eliminate sources of bacterial contamination, and to measure improvements in fecal coliform levels that may be attributed the various BMAP projects implemented by stakeholders.

Constituents

As described in the monitoring plan for this BMAP the constituents include:

Field Measurements:

Water Temperature
pH
Specific Conductance
Dissolved Oxygen (D.O.)
Secchi Depth
Total Stream Depth
Sample Depth
Meteorological Data

<u>Laboratory Analyses:</u>

Fecal Coliform Bacteria

Additional field observations include stream appearance, tidal condition, visual oil & grease, and canopy cover.

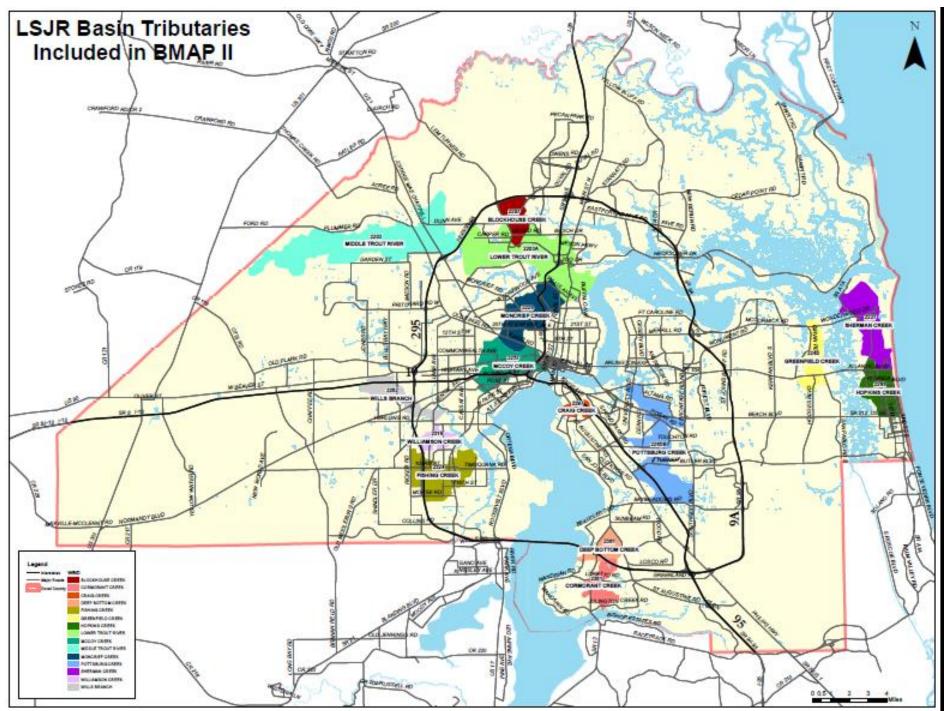
Methodology

Field water quality measurements are collected and logged with a multi-parameter surface water quality meter (MANTA2 multiprobe with optical HDO sensor and Archer hand held display) or comparable multi-parameter instrument. Water samples are collected as surface water grab samples.

Frequency

All City of Jacksonville fecal coliform BMAP sampling is being conducted on a monthly frequency (even though the BMAP document allows some sites to sampled quarterly). When fecal coliform results exceed 5000 cfu/100 ml follow-up sampling is implemented in an effort to identify a source for the elevated results. All follow-up results are tracked independently and are not entered into STORET.

Stations


City of Jacksonville Tributary Group II BMAP Monitoring Stations (18) Table 9.

PCODE	WBID	LOCATION	LAT-Dec	LONG-Dec	Stream Name
		Sherman Creek, East Channel at 20th			
COAB4	2227	Street. This site was moved.	30.35302		Sherman Creek
COAB3	2227	Puckett Creek at Assissi Lane	30.35364	81.41812	Sherman Creek
COAB2	2227	Sherman Creek, West Channel at Fleet Landing Blvd.	30.35359	81.41286	Sherman Creek
SC1 *		Puckett Creek at Wonderwood Dr.	30.3665		Sherman Creek
IWW2 *		Sherman Creek at A1A (Mayport Rd.)	30.37115		Sherman Creek
COAB1		Hopkins Creek, North Branch at Atlantic Blvd.	30.32459		Hopkins Creek
CONB1	2266	Hopkins Creek Main Channel at Penman Rd.	30.3099	81.40705	Hopkins Creek
IWWH *	2266	Hopkins Creek at Kings Rd.	30.30924	81.41693	Hopkins Creek
OR94		Fishing Creek Near Confluence with Ortega River	30.25946	81.72773	Fishing Creek
OR118	2324	Fishing Creek, South Branch at 118th Street	30.23371	81.74317	Fishing Creek
OR8W	2324	Fishing Creek, North Branch at Jammes Rd.	30.24036	81.74741	Fishing Creek
OR4 *	2324	Fishing Creek at Timuquana Rd.	30.24732	81.73386	Fishing Creek
DBPine ⁺	2361	Deep Bottom Creek Channel Near Headwaters	30.19479	81.61239	Deep Bottom Creek
DBHartE	2361				Deep Bottom Creek
DBHartW	2361	Deep Bottom Creek, Northwest Branch at Hartley Rd.	30.18398	81.62444	Deep Bottom Creek
SS18 *	2361	Deep Bottom Creek at Scott Mill Rd.	30.17881	81.63803	Deep Bottom Creek
JC437	2381	Cormorant Branch at Marbon Rd.	30.14928	81.62829	Cormorant Branch
JC2A	2381	Cormorant Branch at Heather Grove Lane	30.15846	81.62934	Cormorant Branch
JC15*	2381	Cormorant Branch at Julington Creek Rd.	30.14045	81.62177	Cormorant Branch

Denotes new site

* Denotes Routine Tributary Site and BMAP site.

⁺ Denotes deleted site.

2013/2014 TRIBUTARY GROUP II FECAL COLIFORM BMAP COJ DATA (Trib BMAP II):

The surface water quality data (temperature, pH, specific conductance, dissolved oxygen, percent saturation of dissolved oxygen and fecal coliform bacteria) are located in Table 10.

Table 10 BMAP II Program. June 1, 2013 – May 31, 2014

Red denotes violation of Class III Surface Water Quality Standards Green Specific Conductance denotes Marine Water

Water Body ID	Waterbody	Water Quality Data					
2361	Deep Botto	m Creek					Fecal Coliform
Station	DATE	Temp ©	рН	Specific Cond.	D.O. (mg/L)	D.O. % Sat.	(CFU/100mL)
DBHARTE	6/26/2013	27.77	6.33	276.2	2.83	36.3	1100
DBHARTW	6/26/2013	27.91	6.36	267.3	0.42	38.6	2900
SS18	6/26/2013	27.82	6.72	293	4.31	55.4	950
SS18	7/1/2013	26.73	6.79	257.9	5.01	63	400
SS18	8/1/2013	27.38	6.79	195.3	5.31	67.5	6000
DBHARTE	9/11/2013	26.44	6.49	290.5	1.44	18	560
DBHARTW	9/11/2013	27.15	6.52	279.7	2.1	26.6	1900
SS18	9/11/2013	26.84	6.78	278.7	3.08	38.8	2400
DBHARTE	10/10/2013	21.62	7.39	233.3	6.43	73.6	2300
DBHARTW	10/10/2013	23.57	6.62	249.7	6.61	78.5	5400
SS18	10/10/2013	23.3	6.89	265.4	6.42	75.9	2300
SS18	11/18/2013	21.38	7.21	336	2.76	31.2	1081
SS18	12/16/2013	16.15	7.29	264.9	7.18	73.5	1532
DBHARTE	1/16/2014	14.23	7.54	512			520
DBHARTW	1/16/2014	14.53	7.13	423			1500
SS18	1/16/2014	14.41	7.75	808			870
DBHARTE	2/5/2014	20.4	7.3	239.9	4.72	52.7	1600
DBHARTW	2/5/2014	20.35	7.39	153	6.59	73.6	6000
DBHARTE	3/11/2014						270
DBHARTW	3/11/2014						2500
SS18	3/11/2014						721
DBHARTE	4/2/2014	18.5	7.53	251.8	4.32	46.4	280
DBHARTW	4/2/2014	19.64	7.5	258.1	4.24	46.7	2000
SS18	4/2/2014	18.97	7.35	246.4	6.53	70.8	310
DBHARTE	5/5/2014	21	7.07	218.6	3.66	41.3	450
DBHARTW	5/5/2014	22.05	7.06	280.8	2.76	31.3	3700
SS18	5/5/2014	20.77	6.93	370.2	4.85	54.6	180
			Perc	ent Compliance	38%		33%

Notes:

^{*}Dissolved Oxygen (D.O.) compliance for this table is set at greater than or equal to 4.0 mg/L for saltwater; greater than or equal to 5.0 mg/L for freshwater.

^{**}Fecal coliform compliance is less than or equal to 800 colony forming units/100ml.

Table 10. BMAP 2 Program. June 1, 2013 - May 31, 2014

Red denotes violation of Class III Surface Water Quality Standards Green Specific Conductance denotes Marine Water

Water Body ID	Waterbody	Water Quality Data					
2381	Cormora	ant Branc	h				Fecal Coliform
Station	DATE	Temp ©	рН	Specific Cond.	D.O. (mg/L)	D.O. % Sat.	(CFU/100mL)
JC15	6/13/2013	26.74	6.45	278.7	2.52	31.7	991
JC2A	6/13/2013	27.27	6.81	270.1	3.81	48.5	180
JC437	6/13/2013	26.73	6.6	243.8	3.76	47.3	991
JC15	7/24/2013	25.47	6.56	266.8	2.89	35.6	2800
JC2A	7/24/2013	25.46	6.77	256.5	4.78	58.8	2200
JC437	7/24/2013	25.23	6.88	230.9	5.34	65.4	2400
JC15	8/26/2013	25.32	6.39	243.6	2.16	26.5	721
JC2A	8/26/2013	25.94	6.65	268.2	3.92	49	450
JC15	9/11/2013	27.34	6.55	395.9	2.03	25.9	480
JC2A	9/11/2013	26.39	6.99	232.2	4.26	53.3	600
JC437	9/11/2013	25.72	6.83	228.4	4.31	53.3	730
JC15	10/16/2013	23.4	6.91	668.4	6.66	78.9	1
JC2A	10/16/2013	22.29	6.94	278.6	5.9	68.4	1622
JC437	10/16/2013	21.91	6.95	258.9	5.65	65	1081
JC15	11/18/2013	20.75	7.26	432	4.84	54.1	270
JC2A	11/18/2013	21.29	7.34	318	6.91	78.1	811
JC15	12/16/2013	15.62	6.85	238.9	3.58	36.3	631
JC2A	12/16/2013	14.5	7.27	269.5	6.41	63.4	721
JC437	12/16/2013	13.75	7.26	246.3	6.73	65.4	631
JC2A	1/16/2014						280
JC437	1/16/2014	14.27	7.59	425			270
JC15	1/22/2014						90
JC15	2/5/2014	19.09	6.97	268.6	3.03	32.9	210
JC2A	2/5/2014	18.96	7.01	305.5	5.23	56.8	200
JC437	2/5/2014	19.13	7	267.2	4.75	51.8	170
JC15	3/20/2014	15.41	7.72	233	4.31	43.5	300
JC2A	3/20/2014	17.02	7.41	257.8	7.84	81.8	250
JC437	3/20/2014	16.15	7.57	234.9	6.65	68.1	82
JC15	4/2/2014	20.98	7.01	194.4	5.58	63	17
JC2A	4/2/2014	19.52	7.04	250.6	5.76	63.2	180
JC437	4/2/2014	19.08	7	231.1	5.7	62.1	98
JC15	5/12/2014	22.66	6.79	183.2	3.72	43.3	4500
JC2A	5/12/2014	24.49	6.9	238.7	4.15	50.1	2900
JC437	5/12/2014	23.85	6.88	207.9	4.86	58	2200
			Perce	ent Compliance	42%		68%

Notes:
*Dissolved Oxygen (D.O.) compliance for this table is set at greater than or equal to 4.0 mg/L for saltwater; greater than or equal to 5.0 mg/L for freshwater.

^{**}Fecal coliform compliance is less than or equal to 800 colony forming units/100ml.

Table 10. BMAP 2 Program. June 1, 2013 - May 31, 2014

Red denotes violation of Class III Surface Water Quality Standards Green Specific Conductance denotes Marine Water

Water Body ID	Waterbody Water Quality Data						
2227	Sherman	Creek					Fecal Coliform
Station	DATE	Temp ©	рН	Specific Cond.	D.O. (mg/L)	D.O. % Sat.	(CFU/100mL)
COAB2	6/11/2013	28.31	6.64	882	3.21	41.6	90
COAB3	6/11/2013	25.17	6.45	446.6	1.79	21.9	1171
COAB4LS	6/11/2013	26.25	7.06	903.6	1.43	17.9	541
IWW2	6/11/2013	29.26	7.52	25764	0.43	6.1	90
SC1	6/11/2013	28.83	7.08	20020	4.09	57	180
COAB2	7/22/2013	27.5	6.84	971.8	3.35	42.9	1532
COAB3	7/22/2013	25.37	6.83	630.8	2.2	27	2700
IWW2	7/22/2013	29.66	7.14	32870	4.47	66.3	180
SC1	7/22/2013	29.17	6.87	24076	3.06	43.5	1261
SC3	7/22/2013	27.24	7.14	5333	2.82	36.3	901
COAB2	8/8/2013	29.08	6.72	913.1	3.6	47.3	180
COAB3	8/8/2013	26.82	6.94	571.4	3.02	38.1	2500
IWW2	8/8/2013	30.19	7.67	44386	6.38	99.8	90
SC1	8/8/2013	30.89	6.99	30955	3.9	58.5	901
COAB2	9/12/2013	27.38	6.8	886.6	0.4	5.1	440
COAB3	9/12/2013	26.44	7.35	913.1	3.39	42.5	30000
IWW2	9/12/2013	28.95	7.05	36572	4.52	67.2	49
SC1	9/12/2013	28.05	6.88	28843	0.89	12.7	820
COAB3	10/3/2013	24.36	7.1	15034	3.8	48.1	1802
IWW2	10/3/2013	25.87	7.21	35399	6.68	93.8	1
SC1	10/3/2013	25.8	6.99	33343	3.76	52.3	360
COAB2	10/21/2013	24.87	6.66	916	7.73	94.2	811
COAB2	11/25/2013	18.36	7.34	1436	8.16	87.2	450
COAB3	11/25/2013	15.78	7.41	1013	5.58	66.6	2100
IWW2	11/25/2013	18.06	6.43	39821	5.26	77.1	1
SC1	11/25/2013	16.44	6	28476	8.35	95	360
COAB2	12/9/2013	21.64	7.13	1530	5.12	58.4	1441
COAB3	12/9/2013	18.75	7.31	1381	6.3	67.9	1441
IWW2	12/9/2013	23.76	7.06	33866	6.41	85.6	90
SC1	12/9/2013	20.08	6.82	28866	4.96	59.4	270
SC3	12/9/2013	20.13	6.56	27124	4.91	59.8	270
COAB2	1/23/2014	10.91	7.42	431			180
COAB3	1/23/2014	10.71	7.12	431			991
COAB4LS	1/23/2014	11.41	7.49	427			270
IWW2	1/23/2014	12.59	6.54	14325			1
SC1	1/23/2014	12.41	6.59	11239			1
COAB2	2/6/2014	16.37	8.02	1639	5.86	60.5	30
COAB3	2/6/2014						1
COAB4LS	2/6/2014	14.86		1121	4.13	41.2	62
IWW2	2/6/2014	14.61	7.07	35525	7.81	88.8	10

Table 10. BMAP 2 Program. June 1, 2012 - May 31, 2013

Red denotes violation of Class III Surface Water Quality Standards **Green Specific Conductance denotes Marine Water**

Water Body ID	Waterbody		Water Quality Data				
2227	Sherman Creek	(continued)					Fecal Coliform
Station	DATE	Temp ©	рН	Specific Cond.	D.O. (mg/L)	D.O. % Sat.	(CFU/100mL)
SC1	2/6/2014	14.88	7.28	11765	6.43	66.7	46
SC3	2/6/2014	14.47	7.69	2105	6.46	64.2	150
COAB2	3/12/2014						1622
COAB3	3/12/2014						1171
COAB4LS	3/12/2014						1
IWW2	3/12/2014						1
SC1	3/12/2014						1
COAB2	4/16/2014	18.36	6.9	1188	5.43	58.4	90
COAB3	4/16/2014	15.13	6.86	410	2.75	27.6	2800
COAB4LS	4/16/2014	16.34	8.28	912.9	1.85	19.1	450
IWW2	4/16/2014	19.69	7.19	40119	8.95	103.1	1
SC1	4/16/2014	18.12	7.13	28904	6.23	74.8	90
SC3	4/16/2014	19.02	7.2	27902	5.18	62.3	90
COAB2	5/13/2014	25.1		1042			1261
COAB3	5/13/2014	23.61	6.54	1155	2.48	29.5	2900
COAB4LS	5/13/2014	24.4	8.6	779.9	1.01	12.2	1
IWW2	5/13/2014	27.95	7.35	32473	4.81	69.5	90
SC1	5/13/2014	27.55	7.3	24332	2.83	32.1	721
			Perc	ent Compliance	52%		66%

Notes:
*Dissolved Oxygen (D.O.) compliance for this table is set at greater than or equal to 4.0 mg/L for saltwater; greater than or equal to 5.0 mg/L for freshwater.

^{**}Fecal coliform compliance is less than or equal to 800 colony forming units/100ml.

Table 10. BMAP 2 Program. June 1, 2012 - May 31, 2013

Red denotes violation of Class III Surface Water Quality Standards

Green Specific Conductance denotes Marine Water

Water Body ID	Waterbody	Water Quality Data					
2266	Hopkins Creek						Fecal Coliform
Station	DATE	Temp ©	рН	Specific Cond.	D.O. (mg/L)	D.O. % Sat.	
COAB1	6/18/2013	28.17	6.54	433	4.81	62.2	631
CONB1	6/18/2013	27.51	6.92	2439	5.21	66.9	2500
IWWH	6/18/2013	28.95	7.15	15458	9.08	124.9	1712
COAB1	7/9/2013	28.94	6.52	452.3	3.01	39.4	1351
CONB1	7/9/2013	27.57	6.87	3613	3.42	44.1	1171
IWWH	7/9/2013	29.7	7	27697	4.54	66	1
COAB1	8/14/2013	28.79	6.75	503.8	2.61	34.1	931
CONB1	8/14/2013	28.98	7.01	5046	5.2	69.2	901
COAB1	9/12/2013	26.75	7.05	283.2	4.79	60.3	42000
CONB1	9/12/2013	26.21	7.3	543.5	5.95	74.2	50000
IWWH	9/12/2013	29.32	7.1	31198	4.88	71.6	480
COAB1	10/2/2013	24.42	7.31	2347	2.76	33.5	2700
CONB1	10/2/2013	24.45	6.94	18334	3.3	42.8	631
IWWH	10/2/2013	25.14	7.05	33653	4.79	65.9	300
COAB1	11/25/2013	16.88	7.52	1868	9.18	94.3	1532
CONB1	11/25/2013	18.47	7.01	5591	6.23	67.7	1622
IWWH	11/25/2013	16.55	5.9	28794	6.21	70.9	721
COAB1	12/17/2013	14.53	6.83	972.2	3.93	39	1712
CONB1	12/17/2013	14.79	7.19	25698	5.45	59.6	901
IWWH	12/17/2013	16.22	7.79	29555	7.5	85.8	1
COAB1	1/23/2014	10.69	6.91	1041			360
CONB1	1/23/2014	12.03	7.42	7029			1351
IWWH	1/23/2014	11.47	6.99	15441			991
COAB1	2/13/2014	12.85	7.46	10130	6.14	60.6	1171
CONB1	2/13/2014	13.02	7.29	17556	7	71.4	1171
IWWH	2/13/2014	12.18	7.15	34037	8.01	86	1
COAB1	3/26/2014	14.04	7.06	436.1	11.53	97.5	1441
CONB1	3/26/2014	14.59	7.2	2383	6.39	63.7	4300
IWWH	3/26/2014	14.5	6.82	19737	6.7	71.1	1081
COAB1	4/14/2014	22.55	6.82	482.6	3.91	45.5	1400
CONB1	4/14/2014	22.9	6.8	24037	4.74	60.3	420
IWWH	4/14/2014	22.9	6.64	27625	6.21	80.2	33
COAB1	5/8/2014	25.37	7.43	432.3	1.86	20.9	450
CONB1	5/8/2014	24.92	7.14	6213	3.91	48.5	1081
IWWH	5/8/2014	24.2	6.85	19112	3.09	40.6	270
			Perce	ent Compliance	59%		37%

Notes:
*Dissolved Oxygen (D.O.) compliance for this table is set at greater than or equal to 4.0 mg/L for saltwater; greater than or equal to 5.0 mg/L for freshwater.

^{**}Fecal coliform compliance is less than or equal to 800 colony forming units/100ml.

Table 10. BMAP 2 Program. June 1, 2013 - May 31, 2014

Red denotes violation of Class III Surface Water Quality Standards Green Specific Conductance denotes Marine Water

Water Body ID	Waterbody			Water	Quality Da	ta	
2324	Fishing Creek						Fecal Coliform
Station	DATE	Temp ©	рН	Specific Cond.	D.O. (mg/L)	D.O. % Sat.	(CFU/100mL)
OR118	6/5/2013	26.43		340.5			951
OR4	6/5/2013	26.39		338.5			721
OR8W	6/5/2013	24.32		181.1			450
OR94	6/5/2013	28.67		3503			901
OR118	7/1/2013	25.64	6.93	180.9	4.35	53.7	210
OR4	7/1/2013	26.52	6.63	325.5	4.33	54.3	1400
OR8W	7/1/2013	27.35	7.56	330.2	9.22	117.4	780
OR94	7/1/2013	28.38	6.8	2060	4.87	63.4	66
OR110	8/13/2013	26.6	6.61	221.1	3.19	40.1	270
OR118	8/13/2013	26.34	6.73	207.3	4.11	51.3	270
OR4	8/13/2013	28.81	6.78	246.5	4.98	65	8182
OR8	8/13/2013	28.58	6.98	248.5	6.8	88.5	2000
OR8W	8/13/2013	27.89	6.95	254.1	6.15	79	5946
OR9	8/13/2013	27.33	6.93	196.1	3.69	46.9	1171
OR94	8/13/2013	31.78	6.89	1097	5.46	75.2	90
OR118	9/4/2013	26.82	6.4	181.2	4.11	51.9	1622
OR4	9/4/2013	28.43	6.9	287	4.75	61.6	1892
OR8W	9/4/2013	28.35	7.1	320.5	7.37	95.5	2000
OR94	9/4/2013	29.85	7.09	782.9	5.47	72.8	90
OR110	10/15/2013	21.3	6.5	229.3	9.78	111.2	2800
OR118	10/15/2013	20.43	6.3	199.4	5.39	60.2	541
OR4	10/15/2013	22.05	6.75	747.5	8.89	102.7	4300
OR8	10/15/2013	21.53	7.02	293.9	10.07	115	2800
OR8W	10/15/2013	20.38	6.86	0.1	5.28	58.9	4600
OR9	10/15/2013	21.19	7.03	252.9	9.66	109.6	8919
OR94	10/15/2013	23.75	7.1	4477	10.58	127.8	631
OR118	11/14/2013	10.48	7.43	461	4.15	37.3	180
OR4	11/14/2013	15.53	7.17	433	8.47	85	270
OR8W	11/14/2013	11.53	7.78	288	13.18	121.1	270
OR94	11/14/2013	14.57	7.45	3567	8.07	80.2	90
OR118	12/5/2013	18.03	7.2	777	9.03	95.6	991
OR4	12/5/2013	18.35	6.68	2018	7.98	83	360
OR8W	12/5/2013	18.09	7.08	750	6.65	70.5	180
OR94	12/5/2013	17.57	6.79	7120	7.54	80.8	450
OR110	1/21/2014	11.49	7.39	435			450
OR118	1/21/2014	10.68	7.75	898			721
OR4	1/21/2014	11.57	7.79	714			2100
OR8	1/21/2014	12.41	7.42	524			4700
OR8W	1/21/2014	10.51	7.51	754			4700

Table 10. BMAP 2 Program. June 1, 2013 - May 31, 2014

Red denotes violation of Class III Surface Water Quality Standards **Green Specific Conductance denotes Marine Water**

Water Body ID	Waterbody			Wate	er Quality Da	ta	
2324	Fishi	ng Creek ((contin	ued)			
Station	DATE	Temp ©	pН	Specific Cond.	D.O. (mg/L)	D.O. % Sat.	Fecal Coliform (CFU/100mL)
OR9	1/21/2014	11.1	7.64	522			360
OR94	1/21/2014	12.11	7.72	900			1
OR118	2/12/2014	12.52	7.77	299.6	5.08	48	20
OR4	2/12/2014	14.61	7.77	527.1	7.69	76.2	460
OR8W	2/12/2014	13.14	7.71	216.9	10.75	103	360
OR94	2/12/2014	14.41	7.43	5115	8.57	86	150
OR118	3/3/2014	21.97	7.18		8.79	101.1	1
OR4	3/3/2014	17.94	7.61	248.4	8.53	90.7	180
OR8W	3/3/2014	18.4	7.49	219.9			90
OR94	3/3/2014	18.38	7.18	3419	8.24	89.3	180
OR110	4/7/2014	21.38	7.16	216.4	4.66	53	270
OR118	4/7/2014	20.72	7.17	265	3.05	34.3	1
OR4	4/7/2014	22	7.21	244	2.81	244	160
OR8	4/7/2014	20.94	7.35	273.8	6.94	78.5	811
OR8W	4/7/2014	21.79	7.22	225	9.95	114.2	180
OR9	4/7/2014	21.27	7.19	274.2	5.91	63.8	270
OR94	4/7/2014	23.28	7.08	327.7	5.19	61.3	1
OR118	5/7/2014	22.4	7.35	289.5	4.04	46.9	90
OR4	5/7/2014	23	7.62	1163	7.62	56.2	1261
OR8W	5/7/2014	23.65	7.45	192.4	9.61	114.7	270
OR94	5/7/2014	25.09	8.5	6562	6.23	77.7	90
			Percen	t Compliance	71%		65%

Notes:
*Dissolved Oxygen (D.O.) compliance for this table is set at greater than or equal to 4.0 mg/L for saltwater; greater than or equal to 5.0 mg/L for freshwater.

^{**}Fecal coliform compliance is less than or equal to 800 colony forming units/100ml.

<u>DISCUSSION OF FECAL COLIFORM MONITORING TRIBUTARY II BMAP</u> (Trib BMAP II):

As mentioned in the BMAP I Section, the objective of the BMAP monitoring effort is twofold: 1. To track fecal coliform water quality improvements resulting from implementation of a variety of projects within each BMAP WBID, and 2. To identify hotspots and then follow-up with additional sampling and investigations so that new or problematic sources will be identified and corrective measures taken by appropriate stakeholders.

The City of Jacksonville's fecal coliform BMAP II monitoring results are summarized in Table 11. As in the discussion for BMAP I results, we have again calculated the percent of samples in each WBID that are greater than 400 cfu/100 ml and the geometric mean for each basin. Once again, all five BMAP II WBIDs being monitored by the City had exceedances greater than 10 percent. The data reveals no real improvements yet between the three years.

The worst basin this year was Deep Bottom Creek with 81 % of samples greater than 400 cfu/100 ml and a geometric mean of 1202. (This was very similar to the last two years of data). Sherman Creek had the lowest percent of samples above 400 at 43%. The basin with the lowest geometric mean was also Sherman Creek with 143 cfu/100 ml. Unlike the BMAP I tributaries, almost all geometric means for the 5 BMAP II tributaries for all three years, are below 1000, the only exception being Deep Bottom Creek for this year.

Table 11. Tributary Group 2 Fecal Coliform BMAP COJ Data Summary. Sampling effort, number of samples exceeding the 400 cfu/100 mL state standard for impairment designation and geometric means.

2013-2014

WBID	Waterbody	Number of samples	Number > 400 cfu/100ml	Percent of samples> 400 cfu/100 ml	BMAP Geometric Mean cfu/100 ml
2227	Sherman Creek	58	25	43%	143
2266	Hopkins Creek	35	28	80%	621
2324	Fishing Creek	60	30	50%	355
2361	Deep Bottom Creek	27	22	81%	1202
2381	Cormorant Branch	34	19	56%	406

2012-2013

WBID	Waterbody	Number of samples	Number > 400 cfu/100ml	Percent of samples> 400 cfu/100 ml	BMAP Geometric Mean cfu/100 ml
2227	Sherman Creek	57	33	58%	294
2266	Hopkins Creek	37	24	65%	415
2324	Fishing Creek	47	26	55%	463
2361	Deep Bottom Creek	32	25	78%	887
2381	Cormorant Branch	33	16	48%	254

2011 -2012

WBID	Waterbody	Number of samples	Number > 400 cfu/100ml	Percent of samples > 400 cfu/100 ml	BMAP Geometric Mean cfu/100 ml
2227	Sherman Creek	65	35	54%	136
2266	Hopkins Creek	39	18	46%	200
2324	Fishing Creek	29	19	66%	453
2361	Deep Bottom Creek	25	20	80%	714
2381	Cormorant Branch	25	7	28%	248

ADDITIONAL TRIBUTARY INTENSIVE MONITORING

A large interagency effort occurred for the ten BMAP I tributaries between April and July 2014. As part of the five year assessment, Maps-on-the-Table exercises and Walk-the-WBIDs exercises were conducted on these basins. Led by DEP Tallahassee, this large effort included all stakeholders (City of Jacksonville EQD, City of Jacksonville Public Works, DEP Jacksonville, Duval County Health Department, FDOT, DACS, and JEA).

Maps-on-the-Table consisted of assembling all the various agency staff members who may have knowledge about actual physical conditions of the drainage area of each waterbody and aspects that may affect water quality and fecal coliform levels. These people gathered together and went over maps of each basin, discussing and noting anything on the maps that may require further inspection and investigation in the field. Types of information of interest included locations of the following:

- Sanitary sewer lift stations, repeat SSOs
- o Neighborhoods with older sanitary sewer lines
- o Failing septic system areas, soggy drain fields
- o Tail pipes into ditches
- o Homeless areas, homeless camps
- Dog walk areas or dog parks
- o Animal kennels, dumped cat litter
- Bird rookeries
- o Concentrations of geese and Muscovy ducks, areas where ducks are fed
- o Farm animals, hobby farms, horses
- Wild hogs, raccoons, other wild animals
- o Rotting biological material around dumpsters, open or rusty dumpsters
- o Trash, garbage dumping, food waste, used diapers
- Grease behind restaurants
- o Stormwater blockages such as trash and debris
- o Stormwater conveyances in need of maintenance
- Overgrown ponds
- Areas prone to flooding
- o Ideal breeding conditions created by low flows, sediment, and shady conditions

Trashy Storm Drain in Miller Creek Drainage Basin

Trash in Stormwater Pond in Hogan Creek Drainage Basin

After the Maps-on-the-Table exercise for each basin, then staff members assembled together in the field to conduct the actual Walk-the-WBID exercise for each basin, investigating the areas of concern noted previously, searching for sources of fecal coliform bacteria, either anthropogenic or natural, and the stormwater conveyances that may be impacting levels of bacteria in the streams. Detailed notes and photographs were taken for each Walk, with follow-up work conducted and being planned for all problems found. The timeline for the work is shown below:

Maps-on-the-Table Exercise

4/21/2014	Miller Creek, Hogan Creek, Butcher Pen Creek
5/19/2014	Big Fishweir Creek, Miramar Creek, Newcastle Creek
6/5/2014	Terrapin Creek, Open Creek, Goodbys Creek, Deer Creek

Walk-the-WBID Exercise

4/23/2014	Miller Creek, Hogan Creek, Butcher Pen Creek
5/22/2014	Miramar Creek, Newcastle Creek
6/19/2014	Open Creek, Terrapin Creek, Deer Creek
6/30/2014	Big Fishweir Creek
7/23/2014	Goodbys Creek

Findings of the Walk-the-WBID Exercise and efforts to remedy the problems discovered will be summarized in next year's report.

Butcher Peen Creek WBID Ditch Inspection

Miramar Creek WBID Waterfowl in Pond

Newcastle Creek WBID Group Walking the Ditch

Walk-the-WBID Group[

Goodbys Creek WBID Checking a Stormwater Ditch

Goodbys Creek WBID JEA Lift Station Inspection

Goodbys Creek WBID Pulling Manhole Covers

GOAL II

Measure the effectiveness of the stormwater pollution reduction measures (BMPs) that have been or will be implemented.

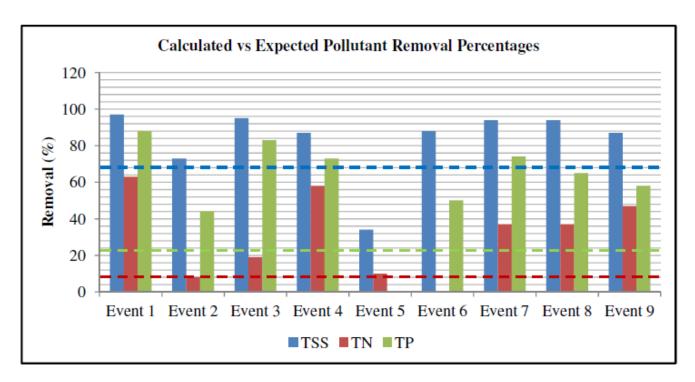
STORMWATER BMP EFFECTIVENESS

To accomplish this monitoring goal the City of Jacksonville proposed to conduct effectiveness monitoring for four separate storm water pollution reduction measures when implemented. The City has completed construction on all four of these projects: Upper Deer Creek, Cedar River Outfall, Pine Forest (completed March 2012), and Woodland Acres (completed October 2009).

Upper Deer Creek Regional Stormwater Facility BMP Effectiveness Monitoring

The Upper Deer Creek Regional Stormwater Facility monitoring (three phases) was complete and results reported (with the final report by CDM Smith attached) in the 2011/2012 annual report.

Deer Creek Regional Stormwater Pond


Cedar River Outfall Regional Stormwater Wet Detention Facility BMP Effectiveness Monitoring

The Cedar River Outfall Regional Stormwater wet detention facility was planned by the City of Jacksonville to control the loading of contaminants to the Cedar River.

Cedar River Regional Stormwater Pond

The Cedar River Outfall Regional Stormwater wet detention facility construction was completed in January 2008. The completion of the monitoring program occurred in October 2012, under the direction of CDM Smith and the University of North Florida. The final report for the Monitoring Program was attached to last year's Annual report.

Pine Forest and Woodland Acres BMP Effectiveness Monitoring

The Monitoring Plan component for stormwater BMP effectiveness monitoiring originally described a fairly simple plan of grab samples collected before and after BMP construction and at upstream and downstream locations.

The implementation of the intensive event-based studies at Deer Creek and Cedar River stormwater facilities mandated a very intensive and demanding workload requiring extra equipment, effort, time, costs, and human resources. This demanding workload allowed monitoring at only one project at a time and precluded any monitoring of the remaining two projects.

The remote automatic monitoring equipment for the Cedar River pond effectiveness study was removed from the site last year and stored for possible future use at additional sites.

The Pine Forest stormwater pond and drainage improvements in the New Rose Creek watershed had construction complete in March 2012. The Woodland Acres Oakwood Villa pond and stormwater drainage improvements in the Strawberry Creek basin had construction complete in October 2009. It is anticipated that the monitoring to assess the effectiveness these two projects will begin sometime in the future now that the Deer Creek and Cedar River BMP effectiveness studies are completed.