Overview of Urban Odor Study Envirosuite Final Report

Michael Williams, P.E.

Air Quality Branch Manager

City of Jacksonville, Florida

Donna Deegan, Mayor

Environmental Quality Division Ed Ball Building 214 N. Hogan Street, 5th Floor Jacksonville, Florida 32202

Number of Odor Complaints by Month and Year

450

Number of Odor Complaints by Month and Year

450

City of Jacksonville

Urban Area Odor Study Annual Report

Date: August 2023

Table 1. Monthly and hourly	<pre>/ distribution</pre>	of historical	complaints.
-----------------------------	---------------------------	---------------	-------------

Year	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	Total
2020	12	5	2	3	6	11	29	56	107	90	65	30	35	16	27	23	23	16	13	24	29	35	24	11	692
September	4			1					6	2	6	5	3	2	6	4	5	3	1	1	3	5	2		59
October	2		1			3	7	16	39	49	17	14	13	5	11	6	9	6	2	6	3	3	2	1	215
November	3	2			1	2	10	8	14	9	4	2	6	3	3	9	5	3	7	13	20	23	14	4	165
December	3	3	1	2	5	6	12	32	48	30	38	9	13	6	7	4	4	4	3	4	3	4	6	6	253
2021	17	31	15	24	19	67	168	390	520	299	211	127	82	72	57	53	64	69	53	63	79	71	62	27	2640
January	4	8	6	1	4	3	7	29	66	56	63	32	11	9	5	8	12	12	7	16	19	21	18	5	422
February	3	2	1	3	1	2	7	41	51	29	25	13	5	11	6	12	10	7	7	6	16	8	6	4	276
March		2			3	7	25	46	27	21	33	15	8	6	2	2	9	8	1	2	5	6	5	2	235
April	2	5	1	3		2	15	52	65	42	20	17	11	5	6	5	10	4	9	6	7	10	3	2	302
May	1	2	1	6	3	6	17	36	49	13	8	6	1	3	1	2	1	3	7	3	3	3	1		176
June				1	1	1	6	2	6	3		2	3	7	6	2	5	1	2	9	1	4	3		65
July	2	2	1			4	6	22	27	20	7	7	3	8	6	4	4	10	6	6	7	4	5	4	165
August						3	2	5	15	10	5	5	4		4	4	2	3		2	2	1		2	69
September	2	1		1		8	19	62	116	49	31	19	19	10	10	6	4	11	4	7	5	10	8	3	405
October	1	1	2		3	20	29	54	51	29	7	5	1	8		2	5		5	3	10	1	7		244
November	2	8	3	9	4	11	35	41	47	27	12	6	16	5	11	6	2	10	5	3	4	3	6	5	281
Total	29	36	17	27	25	78	197	446	627	389	276	157	117	88	84	76	87	85	66	87	108	106	86	38	3332

Figure 1. Historical complaints map (between September 2020 – November 2021).

Figure 9. Wind speed and wind direction seasonal cycles for CS and PP stations. Historical Data.

Table 3. Suspected chemicals associated with known potential odor sources.

Importance Substance		CAS #	Europum(a)	Facilitian		Oc	dor Threshold	VP [mm	Commonte	
importance	Substance	CAS#	Synonym(s)	Facilities	µg/m³	ppb	Source of OT data.	Hg]	Comments	
1	beta-pinene	127-91-3		1,2		140	Odor Detection Thresholds & References (leffingwell.com)	2.93	turpentine-like odor (PubChem); Source 1 primarily beta.	
1	alpha-pinene	80-56-8	2-pinene	1,2		6	Odor Detection Thresholds & References (leffingwell.com)	4.75	pine (PubChem); Source 2 primarily alpha.	
1	styrene	100-42-5	ethenylbenzene, phenylethylene, vinylbenzene	3,4	110	26	TCEQ TAMIS012 02/12/2021	6.4	sweet, balsamic, floral (PubChem)	
2	ethyl mercaptan	75-08-1		1,2	1	0.4	TCEQ TAMIS012 02/12/2021	442	garlic-like, skunk-like odor (CAMEO Chemicals via PubChem)	
2	dimethyl disulfide	624-92-0		1,2	3		PubChem (3-14 ug/m3 detection)	28.7	garlic-like odor (CAMEO Chemicals via PubChem)	
2	methyl mercaptan	74-93-1	methanethiol	1,2	1.9	0.99	TCEQ TAMIS012 02/12/2021	1510	garlic-like, rotten cabbage (PubChem)	
2	(o-) xylene	95-47-6	1,2-xylene, 1-2- dimethylbenzene	4		1000	astr.cdc.gov/MHM/mmg71.p df	6.61	sweet (PubChem)	
2	vinyl acetate	108-05-4	acetic acid ethenyl ester	4	420	120	TCEQ TAMIS012 02/12/2021	90.16	sweet, initially pleasant (PubChem)	
3	limonene	138-86-3	dipentene	1,2		38	Chemicalbook.com	1.64	lemon-like odor (PubChem)	
3	cumene	98-82-8	(1-methylethyl)-benzene; isopropylbenzene	4	650	130	TCEQ TAMIS012 02/12/2021	25.85	gasoline-like odor	
3	dicyclopentadie ne	77-73-6	cyclopenadiene dimer, bicyclopentadiene, discyclopentadiene	3,4		11	Chemicalbook.com	2.29	disagreeable camphor-like odor (PubChem)	
3	methyl methacrylate	80-62-6	2-methyl-methyl ester 2- Propenoic acid; 2-methyl- methyl ester-2-propenoic acid	3,4	860	210	TCEQ TAMIS012 02/12/2021	38.5	sulfur-like, sweet, sharp, acrid fruity odor (PubChem)	

⁴ **Importance**: 1 – Primary, 2 – Secondary, 3 – Tertiary.

Facilities: 1 – IFF, 2 – Symrise, 3 – Taylor Made Fiberglass, 4 – Reichold.

Figure 12. eNose Ambient reference images.

Sensor	Minimum Detection Limit	Lower Limit⁴	Upper Limit⁴	Uncertainty	Operating Range
Air Quality Sensors					
Ammonia (NH ₃)	500 ppb	1 ppm	25 ppm	± 30%, Linearity < 10%	-20C to + 40 C; 10 to 90 %RH non condensing
Hydrogen sulfide (H ₂ S)	10 ppb	20 ppb	1 ppm	± 30%, Linearity < 10%	-20C to + 40 C; 10 to 90 %RH non condensing
Volatile organic compounds (VOCs) 10.6 eV	2 ppb	2 ppb	40 ppm	> 15 ppb ± 15%; From -10 C to 50 C	-40C to +55C; 0 to 99 %RH non condensing

Figure 13 Hardware at the City of Jacksonville. From March 2022-September 2022 (zoomed and cropped).

Figure 14 Hardware at the City of Jacksonville. From October 2022-March 2023.

AC1 - eNose 1 (the same location throughout the study)

Met 1 (the same location throughout the study)

Figure 15. Deployed Hardware Photos (partial).
 Table 9. Hardware maintenance records.

Name	Maintenance Completed
AC 2 - eNose 2	2/24/22 replaced VOC sensor, 4/19/22 replaced VOC sensor
CM 3 - eNose 5	5/3/22 reseated NH3 sensor to correct null values
IFF 1 - eNose 6	3/8/22 - both internal and external battery replaced, 11/30/22 replaced eNose
RHD 1 - eNose 8	11/30/22 replaced eNose
RHD 2 - eNose 9	11/30/22 replaced eNose
RVL 1 - eNose 10	11/30/22 replaced eNose

Mapbox © OpenStreetMap Improve this map
 Improve this
 Improve this map
 Improve this map
 Improve this map
 Improve this
 Im

Figure 17. Monitoring Module feature to view past data for selected parameters.

Figure 23. Example of observed wind field model results in OMNIS.

Figure 24. Example of observed odor model results in OMNIS.

Figure 28. Example of a trajectory in path mode.

18 23 18 23 18 23 0 6 12 0 6 12 0 6 12 Wednesday Friday Sunday Monday Tuesday Thursday Saturday 150 ddd 100 50 18 23 18 23 18 23 12 18 23 12 12 0 6 0 6 12 0 6 0 6 hour SYM3 VOC SYM2 VOC SYM1 VOC 150 100 100 80 100 qdd qdd qdd 80 60 50 60 40 18 J F M A M J J A S O N D Mon Tue Wed Thu Fri 12 23 Sat Sun 0 6 hour month weekday mean and 95% confidence interval in mean

Figure 103. VOC hourly, daily, weekly, and monthly cycles at SYM3 – eNose 3, SYM2 – eNose 4, SYM1 – eNose 5.

Figure 128. VOC Time series at RHD1 – eNose 8 and RHD2 – eNose 9.

Figure 115. VOC time series at IFF1 – eNose 6 and IFF2 – eNose 7.

Figure 152. Inversion strength diurnal and monthly cycles.

Figure 157. Odor events during the study period.

Figure 160. Wind and odor forecast models on June 21, 2022, at 7am.

Figure 161. Backward trajectory on June 21, 2022, at 7:00 am.

Figure 162. Backward trajectory on June 21, 2022, at 7:30 am.

Figure 164. Wind and odor forecast models on October 10, 2022, at 8am.

Figure 165. Backward trajectory on October 10, 2022, at 7:30 am.

VOC Data – October 10, 2022

VOC Data – October 10, 2022

Time 🖵

January 10, 2023

Conclusions

- The software platform was very useful in predicting when an odor episode was occurring or about to occur, which assisted in assigning resources as well as confirming sources after-the-fact.
- The hydrogen sulfide and ammonia sensors performed well. We were disappointed with the VOC sensors they were not very useful after about halfway through the study.
- We consider the odor study to be a success despite the poor performance of the VOC sensors.