
14th State of the River Report for the Lower St. Johns River Basin

Water Quality, Fisheries, Aquatic Life, Contaminants 2021

Gerry Pinto, Ph.D.

About the Report

- Funded by COJ EPB
- Purpose
 - Inform the public about the LSJRB health
 - Provide independent assessments of status and trends
- First annual report in 2008
- Authors

Dr. Gerry Pinto, JU

Dr. Nisse Goldberg, JU

Dr. Gretchen Bielmyer-Fraser, JU

Dr. William Penwell, JU

Brochure Design: David Smith, AU

Dr. Brian Zoellner, UNF

Dr. Charles Closmann, UNF

Dr. Dale Casamatta, UNF

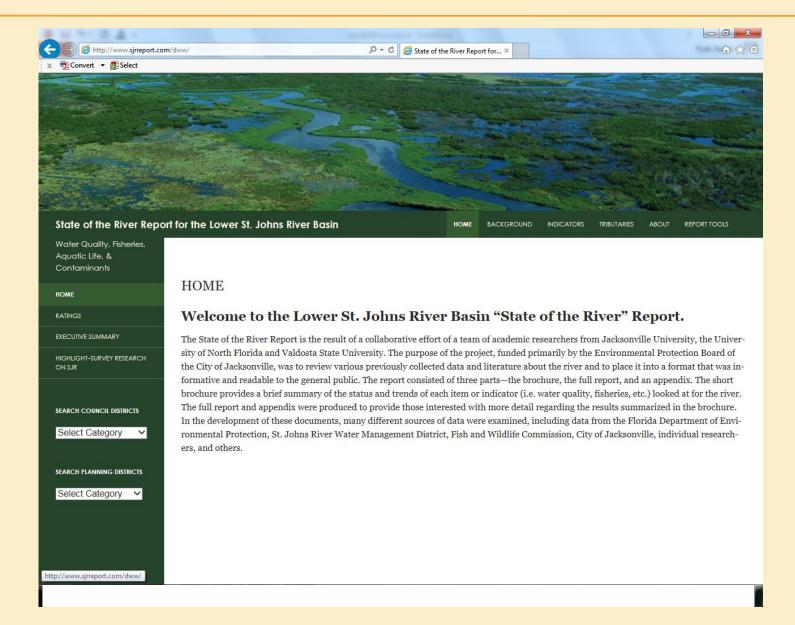
Dr. An-Phong Le, FSC

Dr. Radha Pyati, WCU

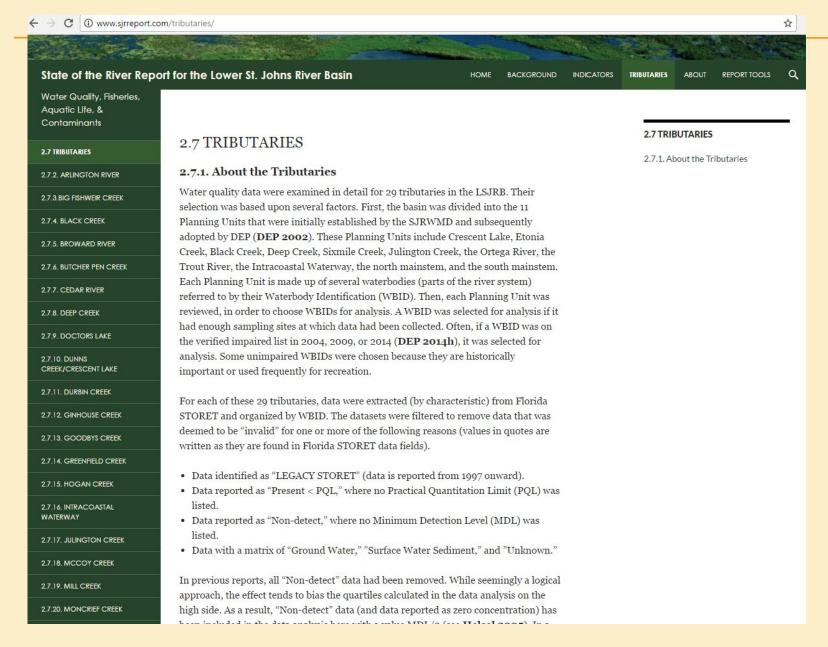
About the Report

- Reviewers and Advisors:
 - SJRWMD
 - City of Jacksonville
 - o FL Dept. of Health
 - o FDEP
 - o JEA
 - St. Johns Riverkeeper
 - Middlebrook Company
 - The Nature Conservancy
 - FWRI
 - FL Sea Grant
 - National Park Service
 - Wildwood Consulting
 - o UNF
 - o JU
 - Valdosta State
 - Teachers from DCPS/Broward Schools
 - Beaches Watch

- Special thanks to:
 - o Dr. Andy Ouellette
 - Dr. Peter Bacopoulos
 - Dr. Stuart Chalk
 - Dr. Lucy Sonnenberg
 - Dr. Dan McCarthy
 - Ms. Heather McCarthy
 - o Dr. Pat Welsh
 - Ms. April Moore
 - Dr. Ray Bowman
 - Dr. Quinton White


The River Report is an independent assessment. Reviewing this Report does not imply agreement with opinions and conclusions reached by the Report's authors.

About the Report


- Topics
 - Highlight PFAS emerging contaminant, by <u>Dr. Gretchen</u>
 <u>Bielmyer-Fraser</u>
 - Background, Guide for the General Public, by <u>Dr. Charles Closmann</u>
 - Water Quality
 - Fisheries
 - Aquatic Life
 - Contaminants
- Full Report, Appendices, and Brochure
- Digital archive of references
- Web Site is interactive searchable by COJ council district/planning district
- Maps and data that visualize vulnerabilities along the St. Johns River,
 by <u>Dr. Ashley Johnson</u> (SSOs, Impaired Waters, Septic Tanks, Aquifer Vulnerability, Soil Drainage Classifications, and JEA's owned properties).
- Lesson Plans and educational resources for teachers (video clips on a wide range of topics, including algae blooms, manatees, and oral histories of people who live, work, and recreate on the St. Johns River) by Drs. Zoellner, Ouellette, Closmann,

Website

Tributaries

Water Quality

Indicator	Status	Trends	
Salinity	Unsatisfactory Impacts increasing	Worsening	
Fecal Bacteria (FIB)	Mainstem: Uncertain Tributaries: Unsatisfactory	Mainstem: Uncertain Tributaries: Uncertain	
Turbidity	Satisfactory	Unchanged	
Dissolved Oxygen	Mainstem: Satisfactory Tributaries: Unsatisfactory	Mainstem: Unchanged Tributaries: Unchanged	
Algal Blooms	Freshwater: Unsatisfactory Estuarine: Satisfactory	Freshwater: Uncertain Estuarine: Unchanged	
Nitrogen	Mainstem: Satisfactory Tributaries: Unsatisfactory		
Phosphorus	Mainstem: Marine/Estuarine Unsatisfactory Mainstem: Freshwater Satisfactory	Mainstem: Marine/Estuarine Worsening Mainstem: Freshwater Worsening	
	Tributaries: Unsatisfactory	Tributaries: Worsening	

Fecal Indicator Bacteria

LSJRB has 52 tributaries impaired for fecal indicator bacteria:
 Of those, 29 have final BMAPs in place.

Bennett Branch	Cowhead	Greenfield	Mill Log	Oldfield Creek	Sherman	West Branch
	Creek	Creek	Creek		Creek	Blockhouse
		(Freshwater				Creek
		Segment)				l.
Big Fishweir	CraigCreek	Hogan	Miller	Open Creek	Silversmith	Williamson
Creek	(Marine	Creek	Creek	(Freshwater	Creek	Creek
(Freshwater	Segment)		(Freshwater	Segment)		
Segment)			Segment)			
Big Fishweir	Deep Bottom	Hopkins	Miller	Open Creek	Strawberry	WillsBranch
Creek (Marine	Creek	Creek	Creek (Marine	(Marine	Creek	(North Prong)
Segment)			Segment)	Segment)		
Blockhouse	Deer Creek	Jones	Miramar	Ortega River	Terrapin	WillsBranch
Creek		Creek	Creek		Creek	(South Prong)
(Freshwater						
Segment)						
Butcher Pen	Dunn Creek	Julington	Moncrief Creek	Pottsburg	Trout River	
Creek	(Marine	Creek	(Freshwater	Creek	(Middle Reach	
	Segment)		Portion)	(Freshwater	Marine	
			***	Segment)	Segment)	
Cedar River	Eagle Run	Little	MoncriefCreek	Red Bay	Trout River	
		Pottsburg	(Marine Portion)	Branch	(Upper Reach)	
		Creek				
		(Freshwater				
		Portion)				
Cedar Swamp	FishingCreek	McCoy	New Rose	Ribault River	Unnamed	
Creek	_	Creek	Creek	(Marine	Branch	
				Segment)		
Cormorant	Goodbys	McGirts	Newcastle	Ribault River	Unnamed	
Branch	Creek	Creek	Creek	(Tidal	Creek	
	(Freshwater			Segment)		
	Segment)					
	300					

FIB Criteria

- Freshwater E. coli
- Not to exceed a geometric mean of 126 CFU/100ml (min. 10 samples/30 day period)
- Not to exceed 410 CFU/100ml
 (10% threshold value in 10% or more samples/30 day period)
 - Marine Enterococci
 - Not to exceed a geometric mean of 35 CFU/100ml (min. 10 samples/30 day period)
 - Not to exceed 130 CFU/100ml (10% threshold value in 10% or more samples/30 day period)

Fecal Indicator Bacteria

- No tributary has reached compliance targets, with 22% exceedance as the lowest value and 100% as the highest value of 7.5-year rolling average period 2013-2020 (freshwater/marine).
 - Lowest: Big Fishweir Creek (22%).
 - Highest: ≥ 90% exceedances in Miller, Deer, Deep Bottom, Craig, and Butcher Pen creeks.
 - No change: 20 tributaries.
 - Increased 15%: 13 tributaries. Blockhouse segments, Deer, Goodbys,
 Greenfield, Moncrief, Open, Pottsburg, Sherman, Trout segments.
 - o Improvement 15% decrease: 2 tributaries. Greenfield, Wills Branch.

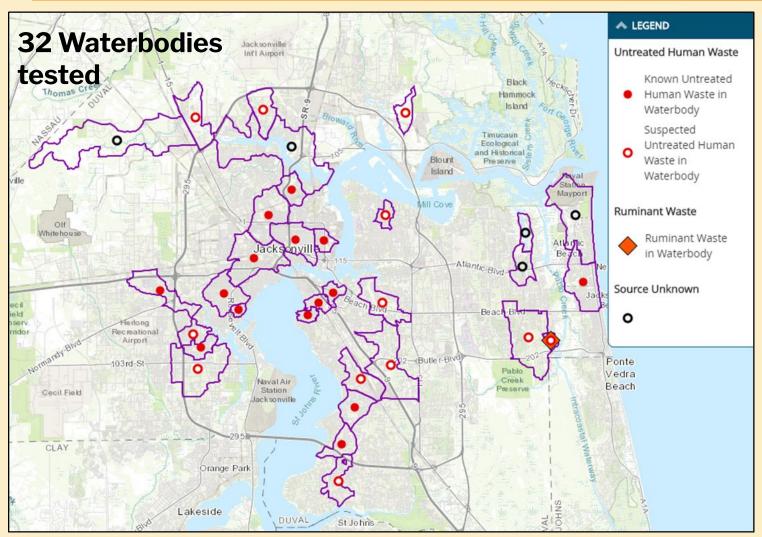
E. coli, and Enterococci

		Percent Exc	eedances ²		
Tributary ¹	(# Samples exceeding criteria / total number of samples)				
		Fecal Coliform ³			
	1/1/2011 - 6/30/2018	1/1/2012 - 6/30/2019	1/1/2013 - 6/30/2020	1/1/2011-6/30/2018	
Big Fishweir Creek (Freshwater)	67%	71%	78%	67%	
Big Fishweir Creek (Marine)	25%	38%	22%	25%	
Blockhouse Creek (Freshwater)	60%	71%	100%	21/2	
Blockhouse Creek (Marine)	No Data	38%	64%	N/A	
Butcher Pen Creek	76%	79%	76%	78%	
Cormorant Branch	69%	64%	67%	69%	
Craig Creek (Freshwater Segment)	94%	No Data	No Data	N/A	
Craig Creek Marine Segment)	No Data	100%	90%	900 1 3030	
Deep Bottom Creek	92%	86%	90%	73%	
Deer Creek	75%	81%	92%	56%	
Fishing Creek	50%	48%	51%	50%	
Goodbys Creek (Freshwater)	56%	50%	77%	62%	
Goodbys Creek (Marine)	30%	27%	43%	48%	
Greenfield Creek (Freshwater)	63%	55%	30%	N1/A	
Greenfield Creek Marine)	0%	6%	43%	N/A	
Hogan Creek	69%	51%	55%	77%	
Hopkins Creek**	77%	81%	70%	70%	
McCoy Creek	66%	68%	66%	63%	
Miller Creek (Freshwater)	100%	100%	100%	NIA	
Miller Creek (Marine)	No Data	79%	81%	N/A	
Miramar Creek	74%	80%	84%	76%	
Moncrief Creek (Freshwater)	40%	36%	31%	58%	
Moncrief Creek (Marine)	36%	48%	61%	80%	
Newcastle Creek	62%	67%	67%	74%	
Open Creek (Freshwater)	57%	44%	69%	66%	
Open Creek (Marine)	67%	70%	67%	59%	
Pottsburg Creek (Freshwater)	29%	36%	44%	37%	
Pottsburg Creek (Marine)	30%	22%	25%	47%	
Sherman Creek**	37%	52%	60%	45%	
Terrapin Creek	70%	63%	88%	73%	
Trout River (Middle Freshwater)	29%	17%	46%	33%	
Trout River (Middle Marine)	38%	43%	65%	46%	
Trout River (Lower)**	0%	6%	25%	22%	
Williamson Creek	58%	53%	66%	84%	
Wills Branch	100%	91%	77%	54%	

What's new

New Biennial Assessment FDEP – all waterbody segments every two years.

More current and recent data, making the verification, TMDL, BMAP, source tracking, and restoration more timely and efficient.

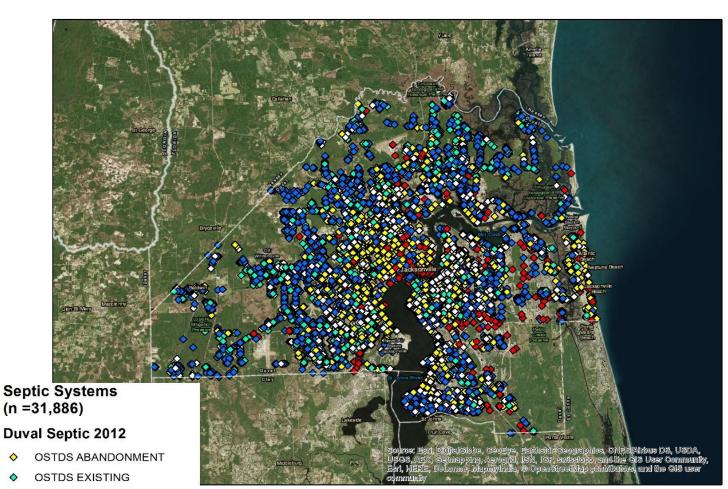

Replaces testing 20% of waterbodies/yr. in 5 year cycles.

Responsible parties are COJ, JEA, the FDOT, FDOH, NAS Mayport, and others including the Cities of Atlantic Beach, Jacksonville Beach, and Neptune Beach. FDEP also plays a role in implementation of BMAP projects. Coordination by the Tributaries Assessment Team.

FDACS for livestock and agriculture sources - BMPs

2020, 580 projects were completed, and 168 activities were ongoing DEP2021.

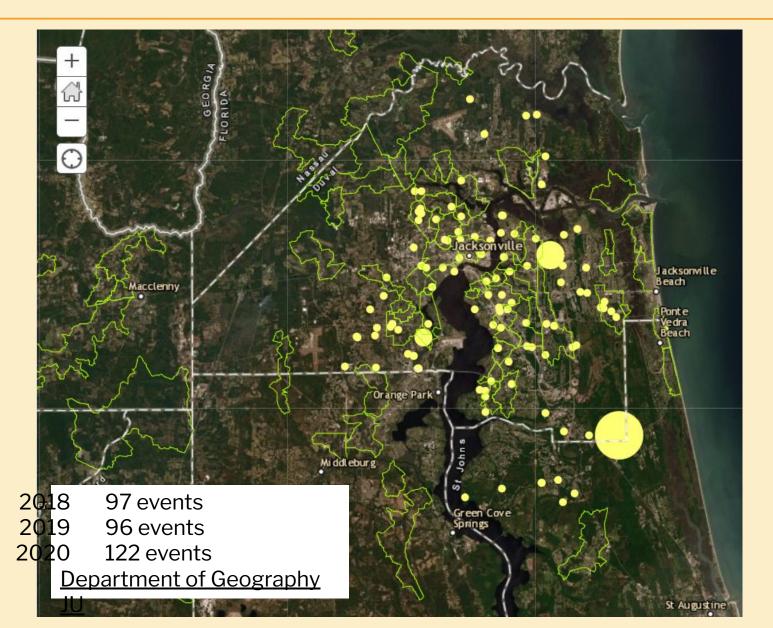
Source tracking FDEP 2018


15 Confirmed

12 Suspected, w/one also having ruminant waste

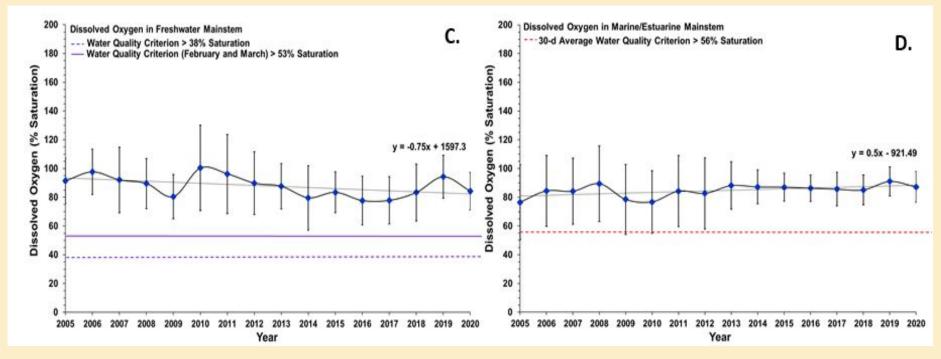
5 Unknown

All Septic Tanks 1992-2012

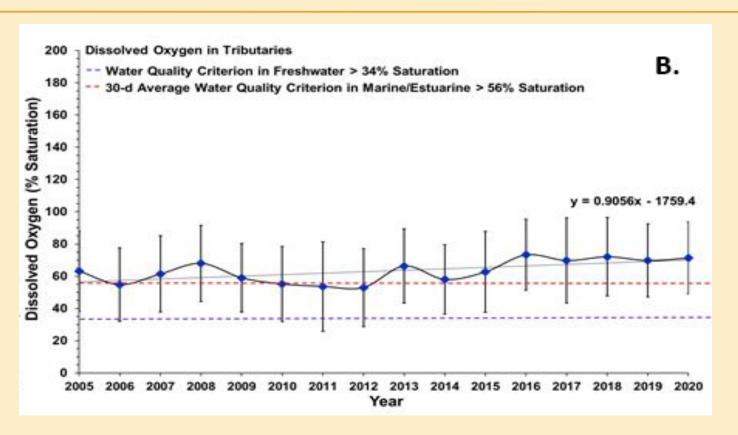

Data source: Florida Geographic Data Library, GeoPlan, University of Florida (<u>www.fgdl.org</u>).

Duval Septic 2012

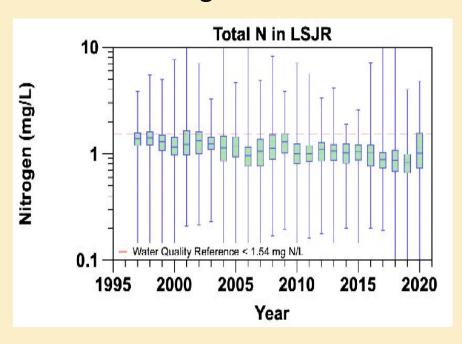
- OSTDS HOLDING TANK
- OSTDS NEW
- OSTDS REPAIR

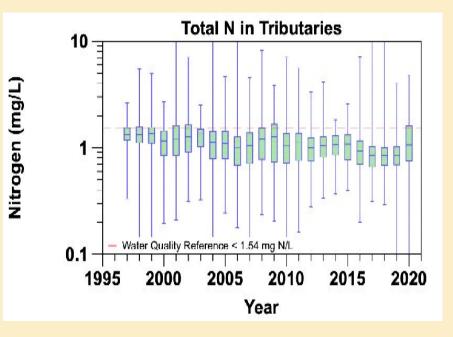

SSOs

Dissolved Oxygen - Mainstem


Freshwater

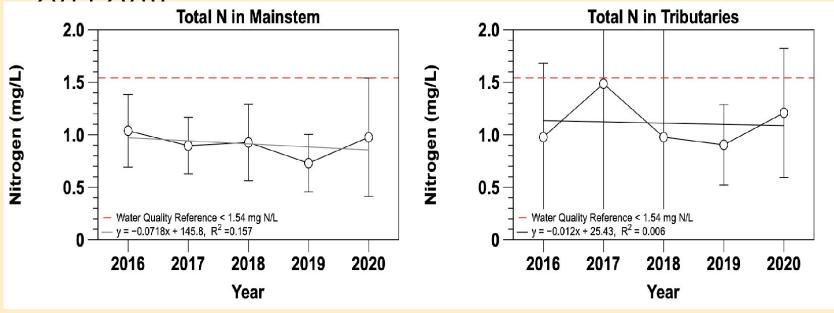
Marine/Estuarin


 Values above line meet criteria. Mainstem medians exceed criteria in both freshwater and marine reaches.


Dissolved Oxygen - Tributaries

- DO in tributaries dependent upon location, time of day, and season.
- Medians in the tributaries exceeded the criterion, many low values.

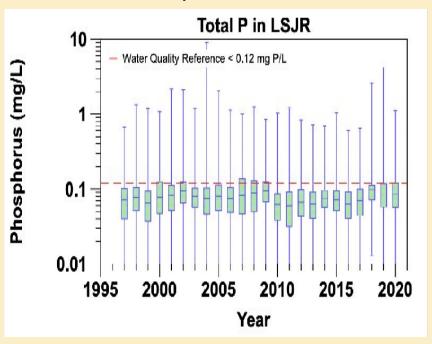
WQC > 38% Saturation 3.5 mg/L at 20°C and 2.9 mg/L at 30°C. WQC > 56% Saturation 5.09 mg/L at 20°C and 4.28 mg/L at 30°C. Total Nitrogen Trend – Mainstem & Tributaries

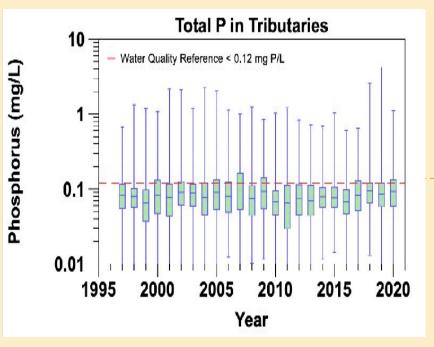


- Total nitrogen levels decreasing, however, unevenly distributed with some areas higher particularly – Tributaries, and salt water mainstem recent uptick.
- Maximum values regularly exceed peninsular FL numeric standard, not adopted WQC, which is in terms of nutrient loading rates (~1.3M Kg TN/Yr.) cannot be compared to actual water concentrations.

Numeric Standard, peninsular Florida 1.54 mg TN/L (DEP 2013f)

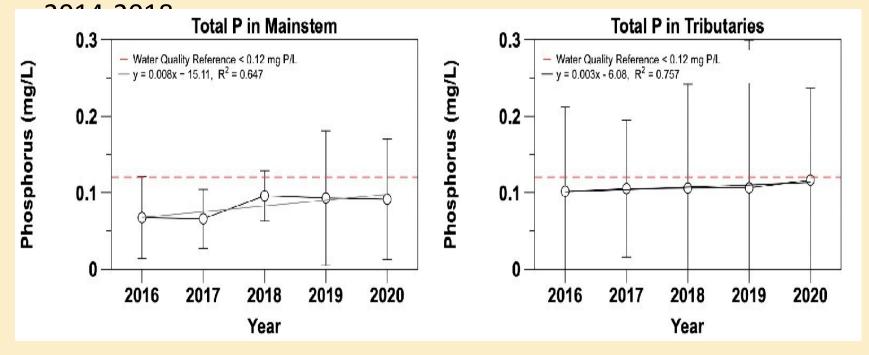
Total Nitrogen Trend – Mainstem & Tributaries
 2014-2018



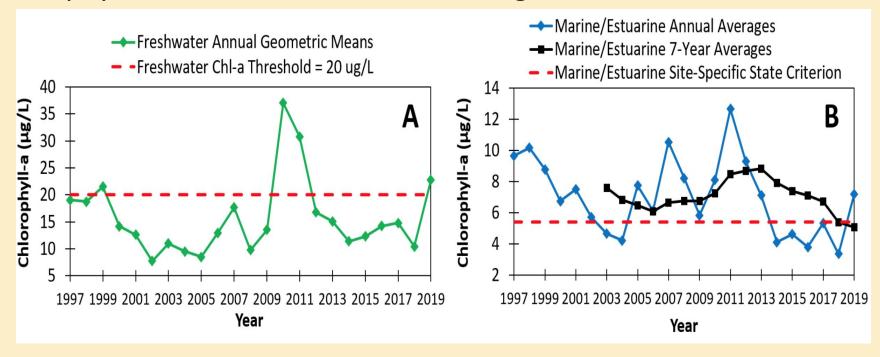

- TN levels in the mainstem trended downwards.
- TN levels in the tributaries spiked in 2017, uptick in 2020.
- Excluding 2017, TN in the tributaries was decreasing slightly.

Nutrients

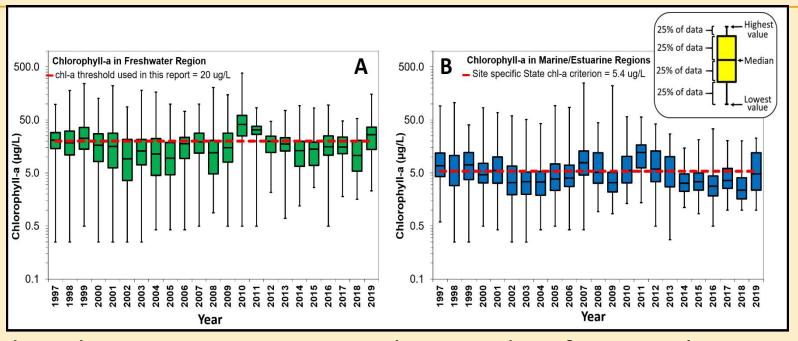
Numeric standard, peninsular Florida 0.12 mg TP/L (DEP 2013f)


Total Phosphorus Trend – Mainstem & Tributaries

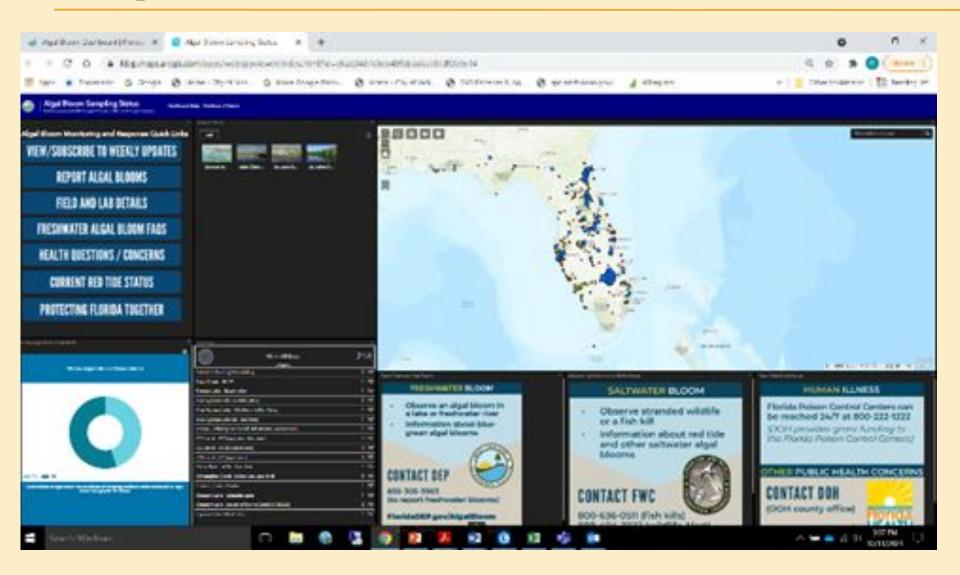
- TP means below reference mainstem; near reference tributaries.
- TP maxima above reference both mainstem & tributaries unsatisfactory.
- Maximum values exceed the peninsular FL numeric standard, not adopted WQC, which is in terms of nutrient loading (~0.4 M Kg TP/Yr.) cannot be compared to actual water concentrations.


Total Phosphorus Trend – Mainstem & Tributaries

- TP mainstem trending upwards. TP tributaries unchanged.
- TP Freshwater mainstem decreasing since 2014, but jumped up in 2018.
- TP marine/estuarine mainstem increasing over the past 5 yrs.


Freshwater criterion 20 μg/L Marine criterion 5.4 μg/L

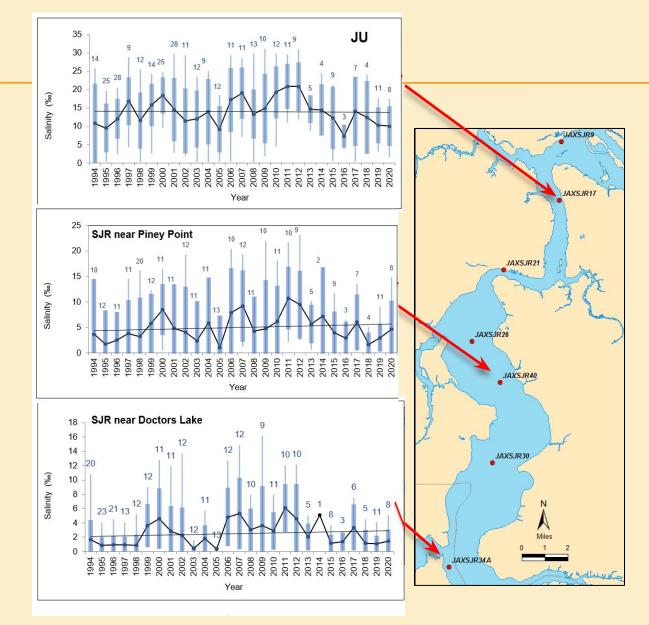
- Phytoplankton indicator used to assess blooms
- Pheophytin-corrected to indicate live organisms


— Not all blooms are sampled, miss reported toxic events

Chlorophyll-a

- More data than past years, missing data, no data for critical months, sampling location/depth/area – data set limited in scope.
 - Some bloom events are not represented in the FDEP WIN/STORET database, so our understanding of frequency, duration, and locations of blooms is not comprehensive.
 - Still larger policy issues affecting algae/nutrients —Local, State.

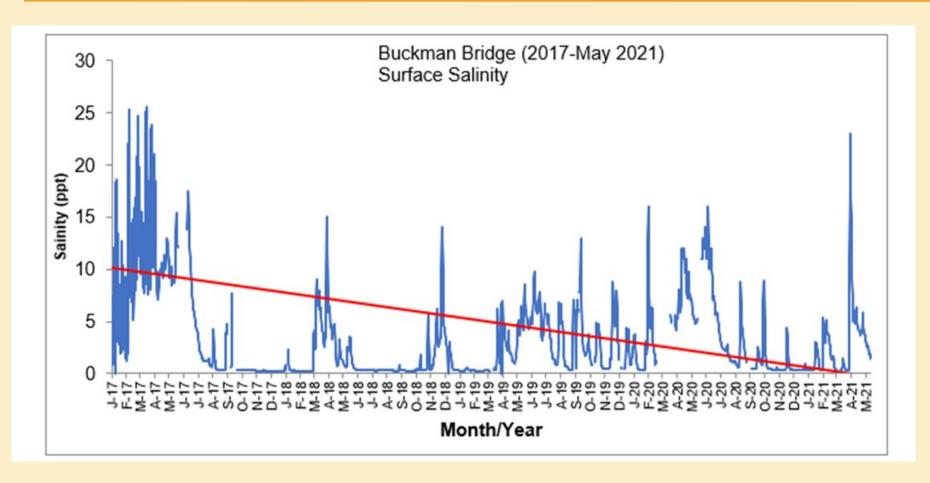
Algae Bloom Network



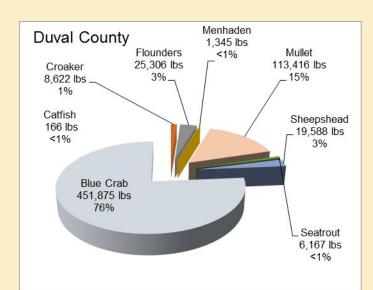
Algae Blooms

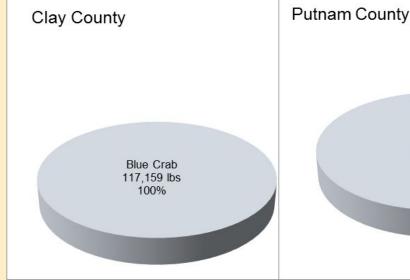
"algal blooms are on the rise, likely due to anthropogenic influence (e.g., increased nutrient levels, climate change [especially elevated temperatures], alterations to physical environments, etc.), and without ameliorative strategies will likely continue to become more problematic as time progresses" Dr. Dale Casamatta (UNF).

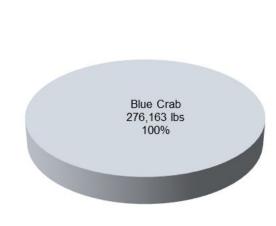
Salinity

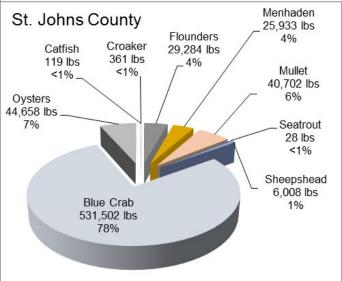

- Fluctuations with weather
 - Drought
 - Hurricanes
- Daily fluctuations with tide up to Shands Bridge
- Increasing mean salinity

Salinity


- Potential impacts in the Lower Basin
 - Movement south of transition zones
 - Redistribution of salt and freshwater fish
 - Life-cycle disruption of organisms that need marine and freshwater habitats (e.g., crabs, shrimp, fish)
 - Shifts in macroinvertebrate populations
 - Less SAV
 - Less freshwater hardwood swamps in some areas


Salinity




Fisheries

- Blue crabs ~75% (1,352,970 lbs) 2019
- Finfish ~22% (403,735 lbs) 2019.
- Mullet ~18% 2019, and ~25% 2016.
- Flounders and sheepshead (1-3%).
- Menhaden, croakers, seatrout, and catfish (<1%) unchanged.

Fisheries

RED DRUM
Satisfactory status
Conditions unchanged

SPOTTED SEA TROUT
Satisfactory status
Conditions unchanged

Satisfactory status
Conditions unchanged

Satisfactory status
Conditions unchanged

Satisfactory status
Conditions unchanged

SHEEPSHEAD

Current status uncertain

Condition trend uncertain

Current status uncertain Conditions unchanged

CHANNEL AND WHITE
CATFISH

Current status uncertain
Condition trend uncertain

SOUTHERN FLOUNDER
Current status uncertain
Condition trend uncertain

BLUE CRAB

Current status uncertain

Condition trend uncertain

PENAEID SHRIMP
Current status uncertain
Condition trend uncertain

 Most finfish and invertebrate species are not in danger of being overfished.

Aquatic Life

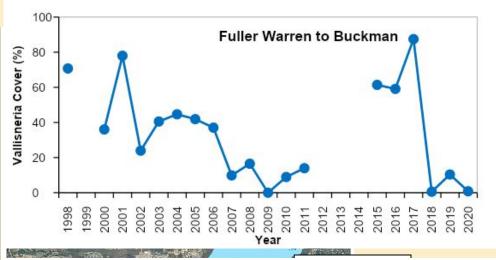
Indicator	Status	Trends
Submerged Aquatic Vegetation	Unsatisfactory	Uncertain
Wetlands	Unsatisfactory	Worsening
Macroinvertebrat es	Uncertain	Uncertain
Threatened and Endangered Species	Satisfactory	Unchanged
Nonnative Aquatic Species	Unsatisfactory	Worsening

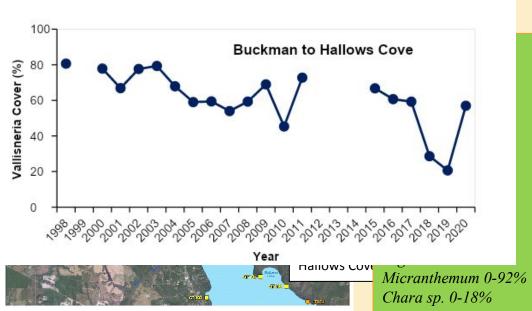
Submerged Aquatic Vegetation

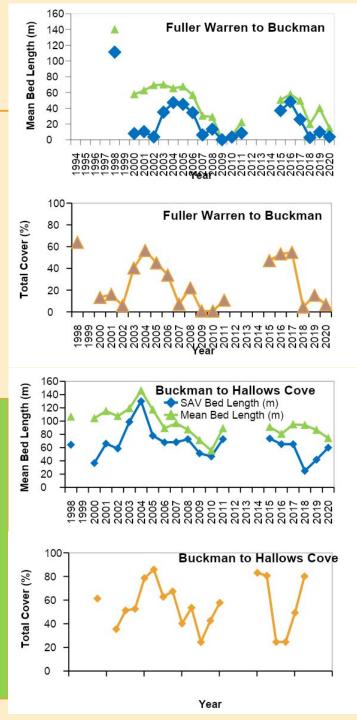
Significance

- Nurseries
- Food
- Improves water quality
- Reduces erosion

Critical Conditions

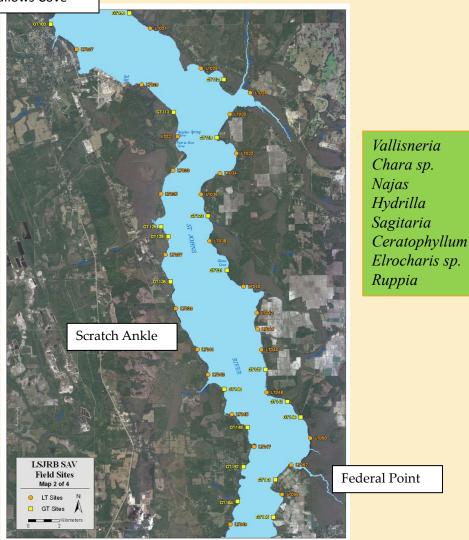

- Salinity
- Water clarity
- Shoreline condition
- Epiphytes

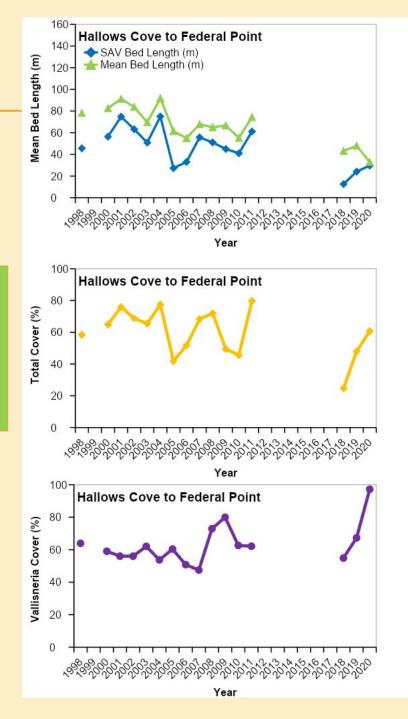

— SJRWMD


Data

- Transects in LSJR:152 stations(2000-11) 56-81stations (2015-2018)
- Aerial observations 2008-2021

SAV





2020 5 sites

Hallows Cove

Summary

- Highly variable over time due to weather and other factors
- Decline in grass bed coverage

Table 4.2 Summary of SAV sampling sites in LSJRB 2015-2020.
All Sites:

, O				
Year	No. bare	Not	Total	% Bare
	no	sampled	sampling	
	grasses		sites	
2015	6	2	56	11
2016	7	2	56	13
2017	12		61	20
2018	16		81	20
2019	30	6	112	27
2020	11	4	44	25

Note: Sampling was reduced in 2020 due to COVID-19 restrictions. Not included above are 6 sites in Doctors Lake (2 or 33% were bare compared to 50% in 2019); and Julington Creek 2 sites (1 or 50% were bare, both had SAV in 2019) (five sites between Hallows Cove and the Shands Bridge in Clay County (Appendix 4.1.7.1.A-E).

Source: (Trent 2020)

Wetlands

83% freshwater, ~44% freshwater forested.

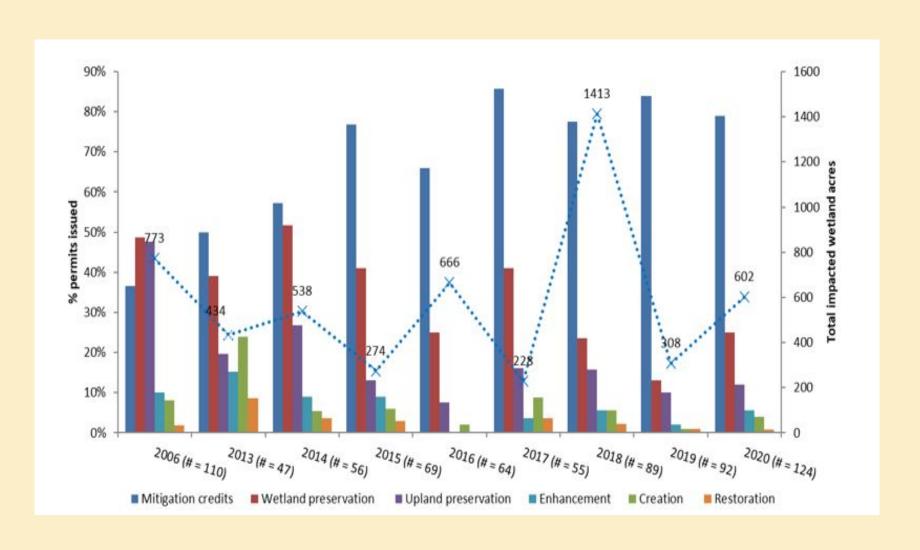
Significance

- Nurseries
- Habitat
- Food
- Improve water quality
- Stabilize banks
- Provide flood control

Stressors

- Pollutants
- Sea Level Rise
- Hydrology changes
- Invasive Species
- Fragmentation

http://www.nwrc.usgs. gov/topics/invasive_sp ecies/index.


htmwww.water.ncsu.e du

Sjrwmd permitting site

Wetlands

wetlands represent 23.8%

of total LSJRWMD area

Wetlands

Summary

- Increased development pressure
- Swapping wetlands types/places
- Less upland preservation, enhancement, creation, and restoration

Concerns:

- Shifts in wetlands types from mitigation and salinity changes
- Loss of coastal wetlands
- Loss of function by connectivity disruptions
- Flooding
- Loss of nutrient retention/habitat

Photos by Heather McCarthy

INDICATOR	STATUS	TREND
Wetlands	Unsatisfactory	Worsening

Non-native species

Non-native species

- 92 mostly freshwater
- Shipping, aquarium trade, releases/escaps
- 1500-2000+ vessels/cruise ships
- Most from Med/Suez passage
- Climate

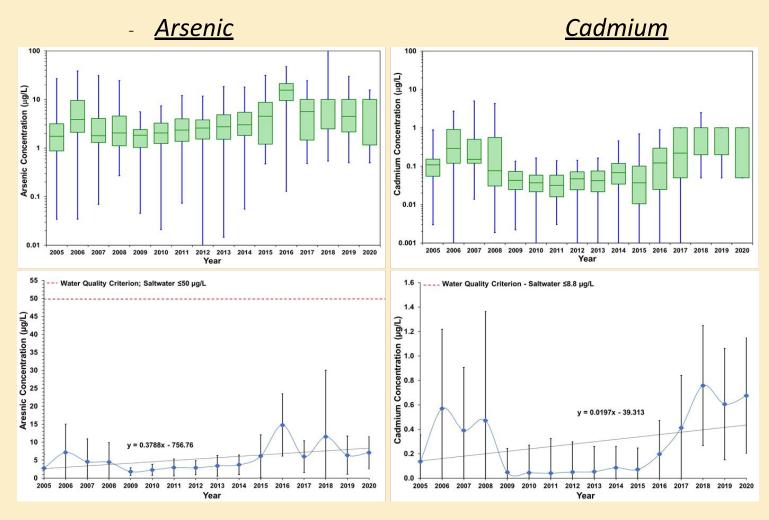
Photos by Heather McCarthy

INDICATOR	STATUS	TREND
Wetlands	Unsatisfactory	Worsening

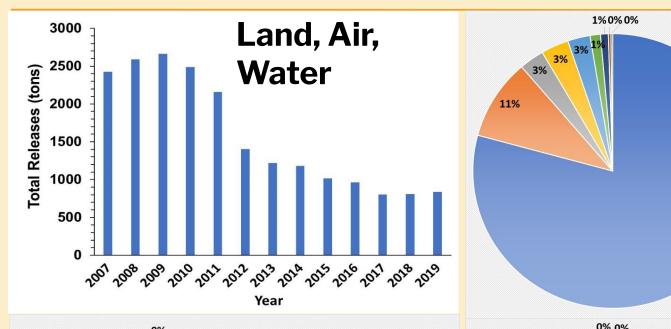
Endangered & Threatened

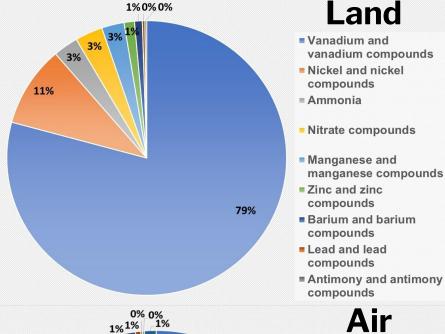
Photo by Wayne Lasch (PBS&J)

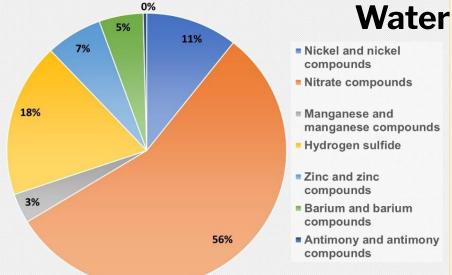
Metals in the water

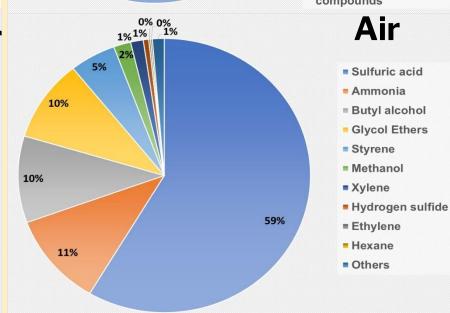

INDICATOR	STATUS	TREND
Metals in FW mainstem	Satisfactory	Unchanged
(aluminum, arsenic, copper, cadmium, lead, nickel, vanadium, zinc) (Silver)	Unsatisfactory	Unchanged
Metals in SW mainstem (aluminum, arsenic, copper, cadmium, lead, nickel, silver, vanadium, zinc)	Unsatisfactory	Unchanged
Metals in the tributaries (arsenic, copper, cadmium, lead, nickel, silver, zinc)	Unsatisfactory	Unchanged

tributaries

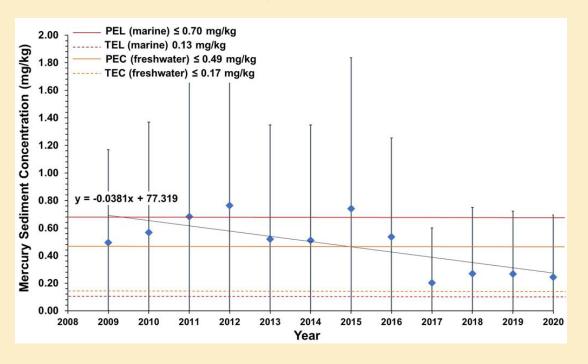

-Many tributaries do not have enough data for trend analysis


Metals in the water

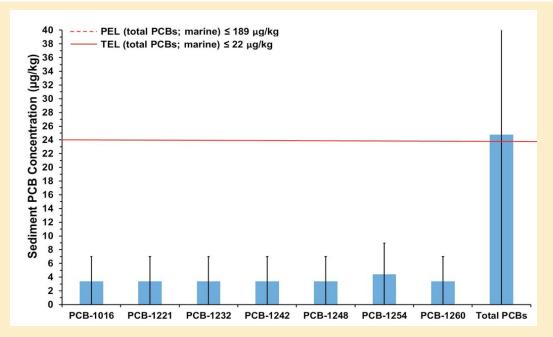

Maxima, medians down 2009-2014 for many, but elevated 2016-2020 SW Mainstem and tributaries.



Release of Metals into the Environment



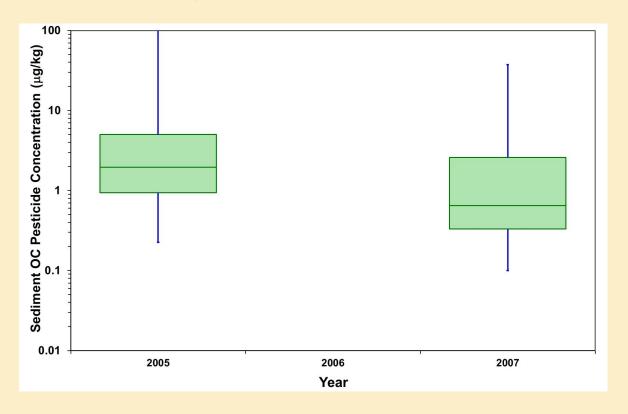
Metals in the sediments


INDICATOR	STATUS	TREND
Metals in sediments (arsenic, copper, cadmium, lead, nickel, silver, zinc) (mercury)	Unsatisfactory	Unchanged

<u>Mercury</u>

PCBs in the sediments

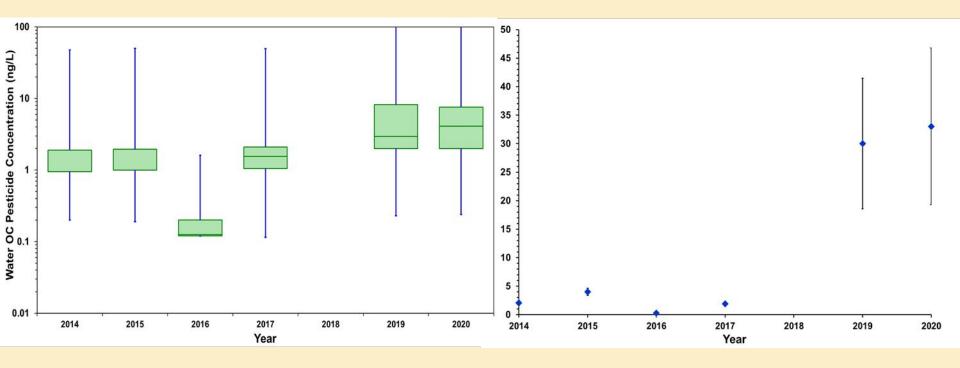
INDICATOR	STATUS	TREND
PCBs in sediments	Unsatisfactory	Uncertain, lacking data



Mean concentrations of individual PCB congeners and total PCBs in sediments collected in 2017. Probable Effect Level (PEL) is indicated by the dotted red line. Threshold Effect Level (TEL) is indicated by the solid red line.

Pesticides

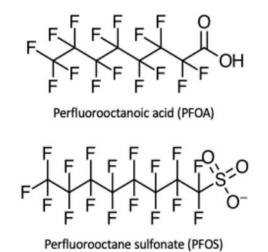
INDICATOR	STATUS	TREND
Organochlorine (OC) pesticides in sediments	Unsatisfactory	Uncertain, lacking data


Total OC pesticide concentration in sediments

DATA LACKING!

Pesticides

INDICATOR	STATUS	TREND
Organochlorine (OC) pesticides in water column	Unsatisfactory	Worsening


Mean total OC pesticide concentration in water column increasing, 2018 no data available

Highlights

Per-and polyfluoroalkyl substances (PFAS)

INDICATOR	STATUS	TREND
PFAS in water column and sediments	Uncertain	Uncertain, lacking data

DATA LACKING! Chemical structure of two well-studied PFAS

PFAS-treated and PFAS containing compounds

By Heather McCarthy

Thank you! Questions?

RIVER HEALTH INDICATORS

The River Report describes the health of the Lower St. Johns River Basin on a number of broad indicators including aquatic life, water quality, fisheries and contaminants. The current status and historic trends for each indicator were assessed.

> Life Aquatic

Wetlands help minimize the impacts of local flooding and harbor SUBMERGED AQUATIC VEGETATION Unsatisfactory status

MACROINVERTEBRATES Current status uncertain Condition trend uncertain

Condition trend uncertain

WETLANDS Unsatisfactory status Conditions worsening

FLORIDA MANATEE (threatened) Satisfactory status Conditions unchanged

BALD EAGLE Satisfactory status Conditions improving

WOOD STORK Satisfactory status Conditions improving

NONNATIVE SPECIES Unsatisfactory status Conditions worsening

LEGEND

 Green indicates a satisfactory status Red indicates an unsatisfactory status Gray indicates an un certain status

- Arrow pointing upward indicates an improving trend
- Arrow pointing downward indicates a worsening trend
- > Arrow pointing to the side indicates an unchanged trend
- ? Question mark indicates an uncertain trend

Contaminants

released into the

environment may end up in air, wate

plants or animals

SEDIMENT CONTAMINANTS

POLYAROMATIC HYDROCARBONS (PAHs) Current status uncertain

POLYCHLORINATED BIPHENYLS (PCBS) Unsatisfactory status

ORGANOCHLORINE PESTICINES Unsatisfactory status Condition trend uncertain

METALS garsenic, copper, cadmirm, lead, michel, silver, zinc) Unsatisfactory status Conditions unchanged

WATERBORNE CONTAMINANTS

ORGANOCHLOR INE PESTICIDES

METALS IN THE MAINSTEM Satisfactory status

Conditions unchanged Unsatisfactory status Conditions unchanged

METALS IN THE MAINSTEM MARINE/ESTAURINE lead alcheit silver, variadium, zinc) Unsatisfactory status Conditions unchanged

Fisheries

Striped Mullet is the

explanations and statistical analyses

of status and trend

ratings, see the ful technical report at

www.sjrreport.com.

largest fin fishery in

the region

RED DRUM Satisfactory status Conditions unchanged

SPOTTED SEA TROUT Satisfactory status Conditions unchanged

LARGE MOUTH BASS Current status uncertain Conditions unchanged

CHANNEL AND WHITE Current status uncertain Condition trend uncertain

STRIPED MULLET Satisfactory status Conditions improving

SOUTHERN FLOUNDER Current status uncertain Condition trend uncertain

SHEEPSHEAD Current etatue univertain Condition trend uncertain

ATLANTIC CROAKER Satisfactory status Conditions unchanged

Satisfactory status Conditions unchanged

Current status uncertain Condition trend uncertain

PENAEID SHRIMP Current status uncertain Condition trend uncertain

STONE CRAB Satisfactory status Conditions unchanged Quality ater (

Algal blooms are

overabundance of nitrogen and

DISSOLVED OXYGEN

MAINSTEM-MARINE/ESTUARINE Satisfactory status Conditions unchanged

TRIBUTARIES Unsatisfactory status Conditions unchanged

NUTRIENTS

HITROGEN MAINSTEM Satisfactory status Conditions improving

HITROGEN TRIBUTARIES Unsatisfactory status Conditions unchanged

PHOSPHORUS MAINSTEM MARINE/ESTUARINE Unsatisfactory status Conditions worsening

PHOSPHORUS MAINSTEM ERESHWATER Satisfactory status Conditions worsening

PHOSPHORUS TRIBUTARIES Unsatisfactory status Conditions worsening

ALGAL BLOOMS FRESHWATER Unsatisfactory status Condition trend uncertain

ALGAL BLOOMS ESTAURINE Satisfactory status Condition trend uncertain

Satisfactory status Conditions unchanged

FECAL BACTERIA TRIBUTARIES Unsatisfactory status Condition trend uncertain

FECAL BACTERIA MAINSTEM Current status uncertain Condition trend uncertain

SALINITY Unsatisfactory status Condition worsening "Immarts hieranshio"

Condition trend uncertain Condition trend uncertain

Unsatisfactory status Condition unchanged

Unsatisfactory status Condition worsening

FRESHWATER (stimbum, arsente, copper, cadmium, ikad, alchei, vanadium, zinc)

Johnstonn accente conner cartolium

METALS IN THE TRIBUTARIES (arrienic, copper, cadmium, lead, mickel, silver, zinc) Unsatisfactory status Conditions unchanged

IVER HEALTH INDICATORS

e River Report describes the health of the wer St. Johns River Basin on a number of broad licators including aquatic life, water quality, heries and contaminants. The current status and storic trends for each indicator were assessed

SUBMERGED AQUATIC

MACROINVERTEBRATES

WETLANDS

Unsatisfactory status

Condition trend uncertain

Current status uncertain

Unsatisfactory status

Conditions worsening

FLORIDA MANATEE

Satisfactory status

Satisfactory status

Satisfactory status

NONNATIVE SPECIES

Conditions improving

Unsatisfactory status

Conditions worsening

Conditions improving

BALD EAGLE

WOOD STORK

Conditions improving

Condition trend uncertain

VEGETATION

Aquatic Life

hald eagle was

iri to reduced icide use

IFGFND

Creen indicates a satisfactory status Red indicates an unsatisfactory status Gray indicates an uncertain status Arrow pointing upward indicates an improving trend Arrow pointing downward indicates a worsening trend Arrow pointing to the side indicates an unchanged trend Question mark indicates an uncertain trend

Contaminants

released into the end up in air, water, sul, sediment, vlants or animals

SEDIMENT CONTAMINANTS

- POLYAROMATIC HYDROCARBONS (PAHs) NORTHERN LSIRB Hisatisfactory status Condition trend uncertain
- POLYAROMATIC HYDROCARBONS (PAHS) SOUTHERN LSIRB Unsatisfactory status Condition trend uncertain
- POLYCHLORINATED BIPHENYLS (PCBS) Unsatisfactory status Condition trend uncertain
- DRGANDCHLORINE PESTICIDES
 - Unsatisfactory status Condition trend uncertain
 - METALS Unsatisfactory status Conditions unchanged

WATERBORNE CONTAMINANTS

- METALS IN THE MAINSTEM FRESHWATER
 - factoric codming aickel load, zine, copper, silver) Satisfactory status Conditions unchanged
- METALS IN THE MAINSTEM SALTWATER
 - larseric, cadmuni, nickel, load, zine, copper, añver) Unsatisfactory status Conditions worsening
- METALS IN THE TRIBUTARIES lead, zinc, cupyer, silver) Unsatisfactory status Conditions unchanged

TOXICS RELEASE INVENTORY

- TO ATMOSPHERE
 - Salisfactory status Conditions improving
- TO SURFACE WATERS Unsatisfactory status Conditions unchanged

Fisheries

The Blue Crab is the

RED DRUM Satisfactory status Conditions unchanged

- SPOTTED SEATROUT Satisfactory status Conditions unchanged
- LARGE MOUTH BASS Current status uncertain Conditions unchanged
- CHANNEL AND WHITE CATFISH Current status uncertain Conditions worsening
- STRIPED MULLET Satisfactory status Conditions improving
- SOUTHERN FLOUNDER Current status uncertain Condition trend uncertain
- SHEEPSHEAD Current status uncertain Conditions unchanged
- ATLANTIC CROAKER Satistactory status Conditions unchanged
- BAITFISH Salislactory status Conditions unchanged
- ELUE CRAB Current status uncertain Condition trend uncertain
- PENAEID SHRIMP Current status uncertain Condition trend uncertain
- STONE CRAB Satisfactory status Conditions unchanged

explanations and statistical analyses of status and trend ratings, see the full www.syrreport.com

Nater Quality

Aleal biouns are

the rapid increase

everabendance of

of algae uspaily

caused by an

autrients.

DISSOLVED OXYGEN

- MAINSTEM-MARINE/ ESTUARINE AND FRESHWATER Satisfactory status Conditions unchanged
- TRIBUTARIES Unsatistactory status Conditions unchanged

NUTR ENTS

- NITROGEN MAINSTEM Unsatisfactory status Conditions improving
- NITROCEN TRIBUTARIES Unsatistactory status Conditions worsening
- PHOSPHORUS MAINSTEM MARINE/ESTUARINE Unsatisfactory status Conditions worsening
- PHOSPHORUS MAINSTEM FRESHWATER Unsatisfactory status Conditions improving
- PHOSPHORUS TRIBUTARIES Unsatistactory status Conditions unchanged
- ALGAL BLOOMS Unsatisfactory status Condition trend uncertain
- TURBIDITY Current status uncertain Condition trend uncertain
- FECAL BACTERIA TRIBUTARIES Unsatisfactory status Conditions uncharged
- SALINITY Unsatistactory status Conditions worsening (Impasts increasing

RIVER HEALTH INDICATORS

The River Report describes the health of the Lower St. Johns River Basin on a number of broad indicators including aquatic life, water quality, fisheries and contaminants. The current status and historic trends for each indicator were assessed.

Aquatic Life

The hald engle was removed from the endangered species test in 2007 due to part to reduced positioned use. SUBMERGED AQUATIC
VEGETATION
Unsatisfactory status
Condition (montalin

- MACROINVERTEBRATES

 Current status uncertain

 Condition trend uncertain
- WETLANDS
 Unsatisfactory status
 Conditions warming
- FLORIDA MANATEE

 Obviolation
 Salistactory status
 Conditions improving
- BALD EAGLE
 Satisfactory status
 Conditions improving
- WOOD STORM.
 Satisfactory status
 - Conditions improving

 MONNATIVE SPECIES
 Illustriatory status
 Conditions warrowing

LEGEND

- Green indicates a satisfactory status
- Red indicates an unsatisfactory status
- Gray indicates an uncertain status
- → Arrow pointing upward indicates an improving trand
- Arrow pointing downward indicates a worsawing trend.
- Arrow pointing to the side indicates an unchanged trend
- ? Question work indicates an uncertain trend

Contaminants

released into the

еликомпьят пак

soil, sediment,

and up to air, water,

plants or animals.

POLYAROMATIC
HYDROCARBONS (PAHs)
HORTHERN LSIRB
Unsatisfactory status
Conditions improving

SEDIMENT CONTAMINANTS

- O POLYAROMATIC
 HYCROCARBONS (PARS)
 SOUTHERN LSIRB
 Ursalisfactory status
 Conditions worsewing
- POLYCHLOR MATED
 BIPHEMYLS (PCBS)
 Unsatisfactory status
 Conditions suchasond
- SEDIMENT PESTICIDES Unsatisfactory status Conditions unchanged
- SEDIMENT METALS Unsatisfactory status Condition anchanged

WATERBORNE CONTAMINANTS

- HETALS ON MAINSTEM
 Drawnic continues socked
 lead, abic, copper, other!
 Solislactory status
 Constitions improving
- METALS IN TRIBUTARIES
 Jerseilo, continue and ic,
 jerseilo, continue and ic,
 jerseilo, continue and ic,
 jerseilo, continue and incortain
 Condition trend uncertain

TOXICS RELEASE INVENTORY

- TO ATMOSPHERE
 Setisfactory status
 Condition improving
- TO SURFACE WATERS
 Unsatisfactory status
 Condition anchanged

Fisheries

The Blue Grate is the

forgest commercial fishery in the region. RED DRUM Satisfactory status Conditions unchanged

- SPOTTED SEA TROUT
 Satisfactory status
 Conditions unchanged
- Carrent status ancertain Conditions anchanged
- CHANNEL AND WHITE CATFISH
 Content status inscertain
 Conditions morsening
- STRIPED MULLET
 Satisfactory status
 Condition improving
- Southern Flounder
 Commit status encertain
 Condition from a uncertain
- SHEEPSHEAD

 Cornert status amcertain

 Condition from uncertain
- Satisfactory status Contillions anchanged
- BAITFISH Satisfactory status Conditions anchanged
- Condition from amountain
- PENAEID SHRIMP
 Connect status encertain
 Condition trend uncertain
- STONE CHAB

 Satisfactory status
 Conditions unchanged

For detailed explanations and statistical analyses of status and trend ratings, see the full technical report at man simport can. Vater Quality

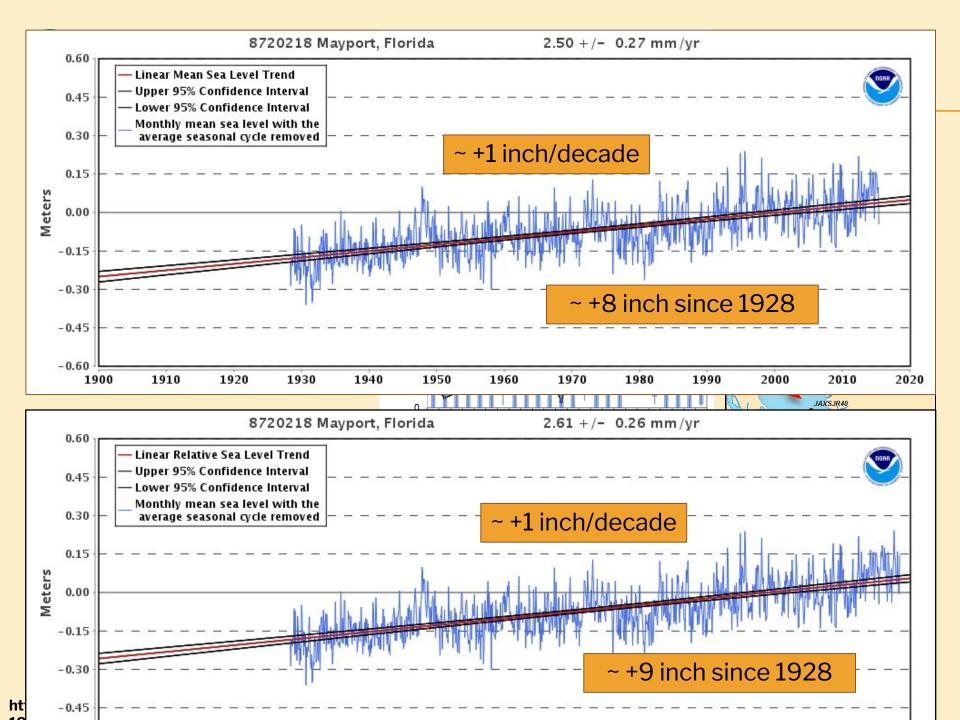
Algai blooms are the rapid increase of algae usually cansed by an overabundance of

DISSOLVED OXYGEN MAINSTEM Satisfactors status

Satisfactory status Conditions unchanged

TRIBUTARIES
Unsated actory status
Conditions Improving

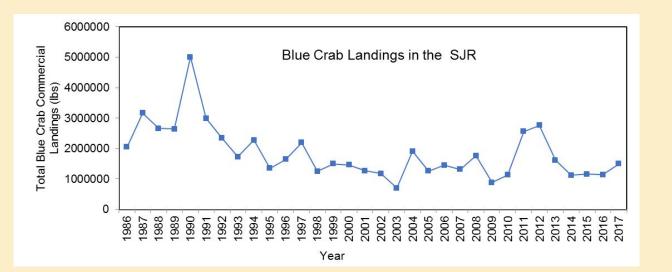
NUTRIENTS


- MITROGEN MAINSTEN
 Current status uncertain
 Condition frend uncertain
- MITROGEN TRIBUTARIES

 Countries status encentain

 Condition frond encentain
- PROSPHORUS MAINSTEM
 MARINE/ESTBARINE
 Satisfactory status
 Conditions invaring
- PROSPHORUS MAINSTEM FRESHWATER Salastactory status Conditions section ped
- PHOSPHORUS TRIBUTARIES
 Unsatisfactory status
 Conditions unchanged
- ALGAL BLOOMS

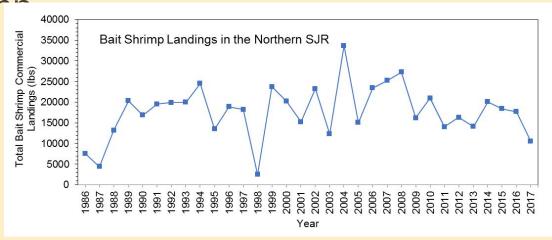
 Unsatisfactory status


 Conditions unchanged
- Satisfactory status
 Conditions unchanged
- FECAL COLIFORM
 Unsatisfactory status
 Conditions unchanged
- SALINITY
 Unsatisfactory status
 Conditions worsening
 Property Inventory

Blue Crabs

- Final Age?
- No trend in the southern section where most crabs are caught
- Recreational Fishery?
- Status: Uncertain
- Trend: Uncertain

 Male crabs can reproduce many times, females only mate once when mature and can store sperm for several months before actually spawning eggs.



http://www.jacqueauger.com/.../natural/blue_crab

White Shrimp

- Commercial data: no trend overall and high annual variability.
- Most shrimp caught in the northern part of the river, trend increasing.
- Southern section of the river trend decreasing.
- Increasing trend in Young of Year shrim
- Status: Uncertain
- Trend: Uncertain

- Brown, pink, white shrimp.
- Season closed:
 April-May: Nassau,
 Duval, St. Johns, Putnam,
 Flagler, and Clay
 Counties.

Summary

- Highly variable over time due to weather and other factors
- Decline in grass bed coverage
- SAV sampling north of Buckman

Sites north of Buckman Bridge:

Year	Total GT Sites	Bare no grasses	Not samples	Total LT Sites	Bare no grasses	Not sampled	Total sampling sites	% Bare
2015	12	3		7	3	2	19	32
2016	12		2	7	4		19	21
2017	11	9		6	3		17	71
2018	12	5		4	4		16	56