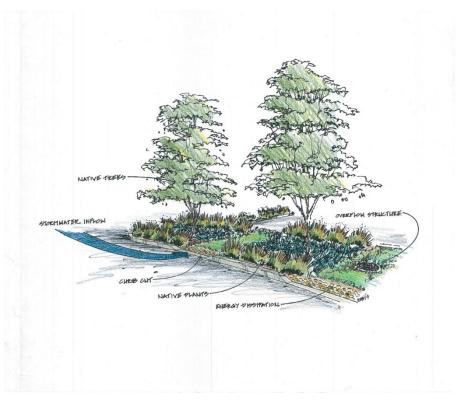
Green Infrastructure

Rebecca Vanderbeck, PE Senior Associate Engineer, Wood Environment & Infrastructure Solutions

Green Infrastructure

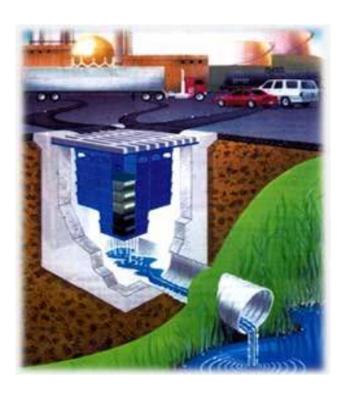
- Definition
- Examples
- Benefits
- Case Studies
- Opportunities



What is Green Infrastructure?

EPA defines green infrastructure as:

"a cost-effective, resilient approach to managing wet weather impacts that provides many community benefits."



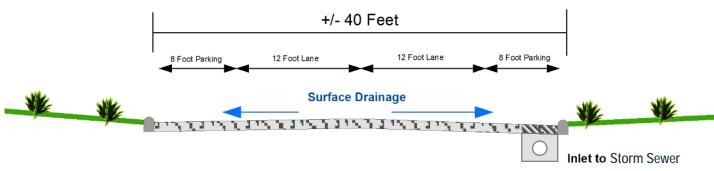
Shifting Paradigms. . . The GI Way of Thinking

Gray infrastructure:

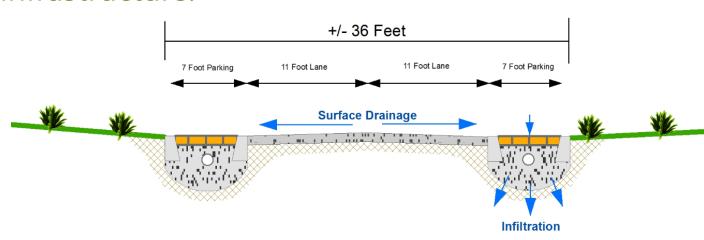
 Use basins, pipes & ditches to remove pollutants from stormwater where it collects

Green infrastructure:

 Use soil and vegetation to manage rainwater close to where it falls



Source: Tompkins County NY (Bioswale)



Shifting Paradigms. . . The GI Way of Thinking

Gray infrastructure:

Green infrastructure:

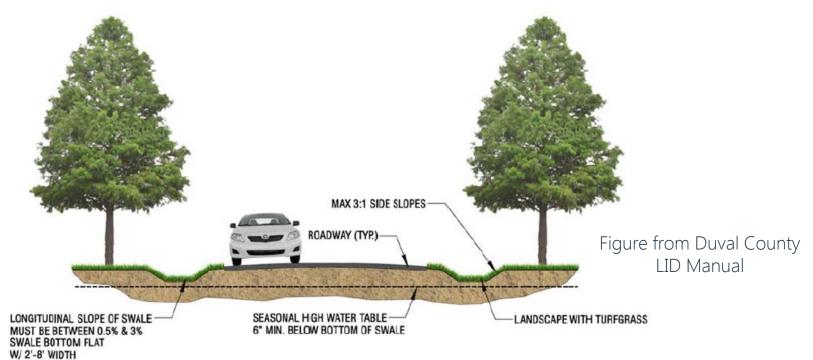
Shifting Paradigms. . . The GI Way of Thinking

Why should we use green infrastructure?

- **Rainwater Harvesting**
- Rain Gardens
- Planter Boxes
- Bioswales
- Permeable Pavements

- Green Streets and Alleys
- Green Parking
- Green Roofs
- **Urban Tree Canopy**
- **Land Conservation**

- Rainwater Harvesting
- Rain Gardens
- Planter Boxes
- Bioswales
- Permeable Pavements


- Green Streets and Alleys
- Green Parking
- Green Roofs
- Urban Tree Canopy
- Land Conservation

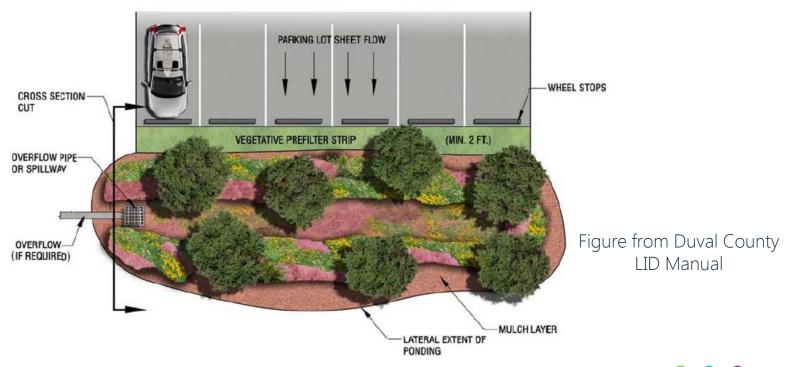
- Rainwater Harvesting
- Rain Gardens
- Planter Boxes
- Bioswales
- Permeable Pavements

- Green Streets and Alleys
- Green Parking
- Green Roofs
- Urban Tree Canopy
- Land Conservation

- Rainwater Harvesting
- Rain Gardens
- Planter Boxes
- Bioswales
- Permeable Pavements

- Green Streets and Alleys
- Green Parking
- Green Roofs
- Urban Tree Canopy
- Land Conservation

- Rainwater Harvesting
- Rain Gardens
- Planter Boxes
- Bioswales
- Permeable Pavements


- Green Streets and Alleys
- Green Parking
- Green Roofs
- Urban Tree Canopy
- Land Conservation

- Rainwater Harvesting
- Rain Gardens
- Planter Boxes
- Bioswales
- Permeable Pavements

- Green Streets and Alleys
- Green Parking
- Green Roofs
- Urban Tree Canopy
- Land Conservation

Benefits of Green Infrastructure

- Water Quality and Quantity
- Air Quality
- Habitat and Wildlife
- Communities
- Climate Resiliency

Green Infrastructure and Climate Resiliency

- Green infrastructure practices can help communities prepare for and manage the effects of climate change:
 - Manage flooding
 - Prepare for drought
 - Reduce urban heat island
 - Lower building energy demands
 - Spend less energy managing water
 - Protect coastal areas

Benefits of Green Infrastructure

- Improved aesthetics of asphalted commercial area
- Pollutant removal prior to discharge to underground treatment units
- Reduced flood volumes and flow rates to receiving floodplain system
- Groundwater table recharge
- Reduced flooding of lowestlying businesses

Avoiding perception of higher costs

- Recognize avoided costs
- Recognize that all infrastructure requires maintenance
- Recognize multiple benefits

Green infrastructure provides environmental, social, & public health benefits

Cost Benefit Analysis

Triple Bottom Line – Cost Benefit Analysis

Cost Benefit Analysis

+
Life Cycle Cost
Analysis
+
Resilience Analysis
+
Triple Bottom Line

Triple Bottom Line - Cost Benefit Analysis

Financial Costs/Benefits:

- Capital Expenditures
- Operations and Maintenance Costs
- Replacement Costs
- Residual Value of Assets
- Decommissioning Costs
- Regulatory Penalties
- Other Costs
- Revenues
- One-time Subsidies
- Recurring Subsidies

Co-Benefits:

- Additional Detention
- Additional Piping
- Air Pollution
- Carbon Emissions
- Flood Risk
- Heat Mortality
- Property Value
- Recreational Value
- Social Value of Water
- Water Quality
- Wetlands Value

100RC National GI Challenge - NOLA

<u>Challenge</u>:

Demonstrate how ecosystem goods and services value can be added to a Triple Bottom Line Analysis in the design to transform a 25-acre empty site into a recreational and educational urban amenity.

100RC National GI Challenge - NOLA

Design Objectives:

- Divert and temporarily store up to 10 million gallons of water to reduce flooding
- Infiltrate water to allow organic soils to stabilize and limit subsidence
- Clean the water of pollutants through a series of constructed filtration wetlands
- Educate by demonstrating how natural processes can be utilized for more sustainable water management and local ecology

100RC National GI Challenge - NOLA

Features:

- Storage systems (Cistern)
- Impervious surfaces (Driveways; Concrete sidewalks; Concrete)
- Retention/Detention (Bioretention Cells; Rain garden; Dry detention pond)
- Water Conveyance (Vegetated swales; Piping Underdrain; Piping Stormwater Discharge; Piping beneath Cartier)
- Roofing Systems (Grey roof)
- Infiltration Practices (Interlocking Porous Concrete Paver; Flexible Porous Paving; Stone Paving; Concrete Step Pads)
- Landscaping Practices: Additional Trees;
 Additional Shrubs; Managed Turf;
 Unmanaged Turf)

Impacts:

Financial

- Capital Expenditures
- Operations and Maintenance Costs
- Replacement Costs
- Residual Value of Assets
- Decommissioning Costs

Environmental

- Air Pollution
- Carbon Emissions
- Water Quality

Social

- Heat Mortality
- Property Value Uplift/Aesthetic benefits
- Recreational Value
- Avoided Flood Damage
- Avoided Subsidence Damage
- Science and Education
- Public Health (exercise)

100RC National GI Challenge - NOLA

Solution:

To see how the design met the objectives, the cost-benefit analysis valued the water quality and avoided flood risk as well as the avoided subsidence and the educational benefits of the project.

Impact Type	Cost/Benefit	Median Value	95% Confidence Interval		
Financial	Capital Expenditures	-\$12,141,029	-\$12,576,950	to	-\$11,739,432
Financial	Operations and Maintenance	-\$2,622,715	-\$3,290,368	to	-\$2,139,443
Financial	Replacement Costs	-\$2,774,896	-\$6,437,983	to	-\$1,443,802
Financial	Residual Value of Assets	\$827,631	\$147,289	to	\$1,993,376
Social	Heat Island Effect	\$79,612	\$111,616	to	\$30,748
Social	Recreational Value	\$1,309,576	\$1,014,965	to	\$1,602,333
Social	Flood Risk	\$90,250,751	\$23,588,468	to	\$278,011,070
Social	Subsidence Risk	\$232,436	\$116,722	to	\$368,578
Social	Education	\$480,097	\$318,422	to	\$651,232
Social	Public Health	\$742,323	\$324,566	to	\$1,304,393
Social	Property Value Uplift	\$2,604,632	\$1,531,101	to	\$3,998, 568
Environmental	Water Quality	\$31,599	\$31,599	to	\$31,599
Environmental	Carbon Emissions from Concrete	-\$144,877	-\$257,507	to	-\$63,189
Environmental	Air Pollution Reduced by Vegetation	\$90,082	\$53,622	to	\$133,687
Environmental	Carbon Reduction by Vegetation	\$12,579	\$5,498	to	\$21,598
Triple Bottom Line Net Present Value		\$79.1 M	\$4.6 M	to	\$269 M

Opportunities for Green Infrastructure

Channelized Stream

McCoys Creek – Present Day

Edwards Bottomlands – Year 0

Opportunities for Green Infrastructure

Channelized Stream

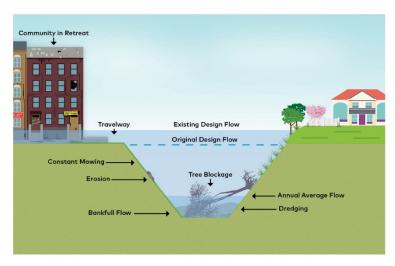
Maron Run – Year 10

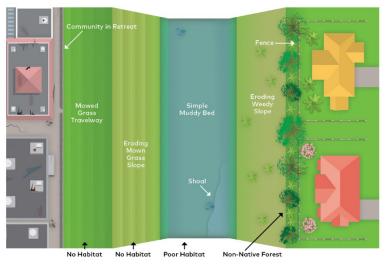
Opportunities for Green Infrastructure

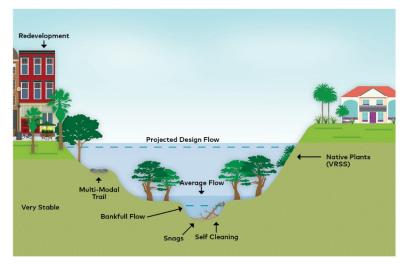
Channelized Stream

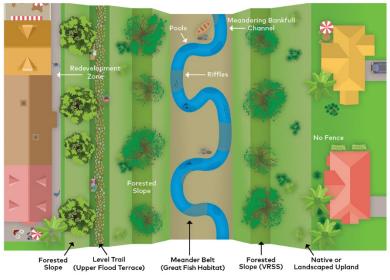
McCoys Creek – Present Day

Hickey Branch – Year 20








Urban Stream Restoration

Channelized Stream

General Benefits of Stream Restoration

- Sustainable and resilient riparian habitat
 - Fish
 - Birds
- Decreased erosion
- Flood mitigation
- Increased wetlands
- Nutrient reduction
- Increased property values
- Blueways and greenways
- Rejuvenate communities

wood.

Thank you!

Rebecca Vanderbeck

<u>Rebecca.Vanderbeck@woodplc.com</u>

(904) 391-3760

